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Abstract

Chapter 1 discusses estimation of average treatment effects under the assumption of un-
confoundedness. I study regression estimators, matching on the propensity score, inverse
probability weighting, and hybrid methods such as bias-corrected matching and doubly ro-
bust estimators. These estimators require the estimation of the conditional outcome means,
the propensity score, or both. In empirical applications, these functions are often estimated
with ordinary least squares or logit. In this chapter I additionally consider machine learning
methods to estimate these functions. To analyze the treatment effect estimators, I conduct
two Monte Carlo simulation studies in which the true treatment effects are known. I find
that machine learning based estimators are in many cases more accurate in terms of treat-
ment effect root-mean-square error than estimators relying on ordinary least squares or logit.
The differences are more pronounced when the underlying relationships are nonlinear and
nonadditive, or when selection into treatment is strong.

Chapter 2 discusses identification and estimation of causal intensive margin effects.1 The
causal intensive margin effect is defined as the treatment effect on the outcome of individuals
with a positive outcome irrespective of whether they are treated or not, and is of interest for
outcomes with corner solutions. The main issue is to deal with a potential selection problem
that arises when conditioning on positive outcomes. We propose using difference-in-difference
methods - conditional on positive outcomes - to estimate causal intensive margin effects. We
derive sufficient conditions under which the difference-in-difference estimator identifies the
causal intensive margin effect. In contrast to standard difference-in-difference methods, two
monotonicity assumptions are additionally required to identify the causal intensive margin
effect. We apply the methodology to estimate the causal intensive margin effect of reaching
the full retirement age on working hours.

Chapter 3 estimates the labor supply response when the spouse reaches the full retire-
ment age.2 We exploit the age difference within couples and changes in pension legislation
in Switzerland to identify the causal effect. In contrast to the majority of previous contri-
butions, we estimate the effect not only on labor market participation (extensive margin),
but also on working hours (intensive margin). We find that the labor force participation
of women decreases, on average, by approximately 3 percentage points in response to the
spouse reaching the full retirement age. We find no evidence that men adjust their labor
force participation when their wives reach the full retirement age. At the intensive margin,
we find only small and mostly non-significant effects for both men and women, although
older workers use working hours to adjust their labor supply. We argue that the response
can be explained by complementarity in leisure and liquidity effects.

1Chapter 2 is joint work with Markus Hersche. Both authors contributed equally to this chapter.
2Chapter 3 is joint work with Markus Hersche. Both authors contributed equally to this chapter.
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Zusammenfassung

Kapitel 1 behandelt die Schätzung durchschnittlicher kausaler Effekte (Behandlungseffekte)
unter der Annahme, dass alle Störfaktoren beobachtbar sind. Die Analyse umfasst Regres-
sionsschätzer, Matching-Methoden basierend auf der bedingten Behandlungswahrscheinlich-
keit, Schätzer basierend auf inverser Wahrscheinlichkeitsgewichtung, sowie hybride Schätzer.
Diese Schätzer erfordern die Schätzung der bedingten Ergebnismittelwerte und/oder der be-
dingten Behandlungswahrscheinlichkeit. In empirischen Anwendungen werden diese Funktio-
nen oft mit der Methode der kleinsten Quadrate bzw. mit logistischer Regression geschätzt.
In diesem Kapitel betrachte ich zusätzlich Methoden des maschinellen Lernens zur Schätzung
dieser Funktionen. Um die Schätzer der Behandlungseffekte zu analysieren, führe ich zwei
Monte-Carlo-Simulationen durch, in denen die wahren Behandlungseffekte bekannt sind.
Die Analyse zeigt, dass Schätzer, die auf Methoden des maschinellen Lernens basieren, den
durchschnittlichen Behandlungseffekt in vielen Fällen genauer schätzen als Schätzer, die auf
der Methode der kleinsten Quadrate bzw. der logistischen Regression basieren. Die Unter-
schiede sind grösser, wenn die zugrundeliegenden Beziehungen nicht linear und additiv sind
oder wenn die Behandlungsselektion stark ist.

Kapitel 2 befasst sich mit der Identifikation und der Schätzung von kausalen Mengen-
entscheidungseffekten.3 Der kausale Mengenentscheidungseffekt wird definiert als der Be-
handlungseffekt - beispielsweise der Effekt einer politischen Massnahme - auf das Ergebnis
von Personen, welche ein positives Ergebnis aufweisen, unabhängig davon, ob sie behan-
delt wurden oder nicht. Dieser Effekt ist insbesondere bei Ergebnissen mit Randlösungen
von Interesse. Das Hauptproblem besteht darin, ein potenzielles Selektionsproblem zu lösen,
welches bei der Konditionierung auf positive Ergebnisse entsteht. Wir schlagen vor, Differenz-
von-Differenzen (DvD) Methoden - konditioniert auf Individuen mit positivem Ergebnis - an-
zuwenden, um den kausalen Mengenentscheidungseffekt zu schätzen. Wir leiten hinreichende
Bedingungen her, unter welchen die DvD Methode den kausalen Mengenentscheidungseffekt
identifiziert. Im Vergleich zu herkömmlichen DvD Methoden werden zusätzlich zwei Mono-
tonieannahmen benötigt, um den kausalen Mengenentscheidungseffekt zu identifizieren. Wir
wenden die Methode an, um den kausalen Mengenentscheidungseffekt des Erreichens des
ordentlichen Rentenalters auf die Arbeitsstunden zu schätzen.

Kapitel 3 schätzt die Veränderung des Arbeitsangebotes, wenn der Partner das ordent-
liche Rentenalter erreicht.4 Wir nutzen Altersunterschiede von Paaren sowie eine Reform
des Frauenrentenalters, um den kausalen Effekt zu identifizieren. Im Gegensatz zu den mei-
sten bisherigen Studien schätzen wir den Effekt nicht nur auf die Arbeitsmarktbeteiligung,
sondern auch auf die Mengenentscheidung (Anzahl Arbeitsstunden). Die Analyse zeigt, dass
die Arbeitsmarktbeteiligung von Frauen im Durchschnitt um drei Prozentpunkte abnimmt,
sobald der Partner das ordentliche Rentenalter erreicht. Wir finden keine Hinweise, dass
Männer ihre Arbeitsmarktbeteiligung anpassen, wenn die Partnerin das Rentenalter erreicht.

3Kapitel 2 wurde in Zusammenarbeit mit Markus Hersche verfasst.
4Kapitel 3 wurde in Zusammenarbeit mit Markus Hersche verfasst.
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Bezüglich der Anzahl Arbeitsstunden finden wir nur geringe und nicht signifikante Effekte,
sowohl für Frauen als auch für Männer. Wir argumentieren, dass die Effekte sowohl durch
Komplementarität in der Freizeit, als auch durch Liquiditätseffekte erklärt werden können.
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Introduction

Understanding causal relationships is at the core of empirical economics and other empirical
social sciences. In many cases, the focus is on understanding the causal effect of one variable
on an outcome of interest.5 Empirical economists are for example interested in the causal
effect of a minimum wage introduction on employment, the causal effect of a deductible on
health care utilization, or the causal effect of attending a job training program on subse-
quent earnings. Knowledge of causal effects is essential for evidence-based policy design and
evaluation. A job training program might, for example, target decreasing the unemployment
duration, or increasing subsequent earnings. However, such a job training program is also
costly. A natural starting point of an evaluation is to assess whether the job training pro-
gram, on average, decreases unemployment duration or increases subsequent earnings of its
participants.

In order to discuss causal effects, the notion of a causal effect needs to be formally
defined. Two frameworks are widely used when addressing causality: the potential outcome
framework and the directed acyclic graph (DAG) approach.6 In the potential outcome
framework - which is used in most parts of this thesis - we start with the definition of the
treatment variable. The treatment variable denotes the variable that can be manipulated -
for example participation in a job training program. For each possible level of the treatment
variable, a corresponding potential outcome indicates the value the outcome variable would
take if the individual were to receive this level of treatment. With a binary treatment, each
individual thus has two potential outcomes:7 the potential outcome in the case of treatment,
and the potential outcome in the case of no treatment.8 The potential outcome framework
then defines the causal effect as the difference between the two potential outcomes.9 However,
we observe only one of the potential outcomes for each individual. This is the ”fundamental
problem of causal inference”, as Holland (1986) puts it. If an individual was treated, we
observe the potential outcome in the case of treatment. If an individual was not treated,
we observe the potential outcome in the case of no treatment. This implies that the causal
effect, at the level of an individual, is never actually observed.

5That is, the interest is in so-called effects of causes (Holland, 1986). A different objective would be to
study the causes of effects.

6For a comparison of the two frameworks from an economics perspective, see Imbens (2019).
7Instead of an individual, the subject could also be a firm, a market, or a country.
8With a binary treatment, I refer to the two levels of the treatment variable as treated or treatment, and

untreated, no treatment, not treated, or control.
9See Section 1.3 for an introduction to the potential outcome framework.

1



However, under certain conditions, it is possible to estimate, for example, the average
of the causal effect. This requires a sample of both treated and untreated individuals, with
information on at least the outcome and the treatment variable. Depending on the setting
and the methods applied, we require additional variables, such as personal characteristics
or past outcomes. Learning causal effects from a sample includes three important steps:
identification, estimation, and inference. Identification is the task of demonstrating that the
causal parameter - e.g. the average causal effect - is identified in the population. A causal
parameter such as the average causal effect is identified in the population if we are able to
rewrite the generally unobserved average causal effect - using identifying assumptions - into
a quantity that is observed in the population. Estimation is the computational part that
takes the data as input and produces an estimate of the causal parameter as output. Finally,
inference is the part that generalizes the results from the sample to the population.10 This
requires taking into account the uncertainty in the estimation. In the potential outcome
framework, there are two main sources of uncertainty. First, we only observe one potential
outcome for each individual, never both. We do not know what the outcome of a given
individual would be if treatment were assigned differently. Second, we are observing only
a sample from the population. In another sample, the estimate of the average causal effect
would likely differ (Imbens, 2004). Inference involves estimating a confidence interval for the
causal parameter. Using the confidence interval, we can then conduct hypothesis tests; for
example, whether the average causal effect is statistically significantly different from zero.

A key focus in the potential outcome framework is on the treatment assignment mecha-
nism. If treatment is randomly assigned, for example in a randomized experiment, identifi-
cation and estimation of average causal effects is rather straightforward (Imbens & Rubin,
2015).11 A simple and unbiased estimator for the average causal effect is given by the differ-
ence in mean outcomes of treated and untreated observations. In practice however, running
a randomized experiment is often not feasible, for financial, ethical, or other reasons (Athey
& Imbens, 2017). For example, if we are interested in the causal effect of college attendance
on earnings, it is unimaginable to run an experiment in which some students would be ran-
domly assigned to attend college (treatment group), while others would be prohibited from
attending college (control group). In these cases, we have to rely on observational data to
estimate the causal effect of a treatment.

However, estimating causal effects is more difficult with observational data. A major
problem is that the relationship between treatment and outcome is potentially confounded
by other variables. This means that there are some variables, called confounders, that have
an effect both on whether the individual is treated or not and on the outcome. In the job
training example, education is a potential confounder. Individuals with a higher education

10This is the case if one is interested in the population average treatment effect. It is also possible to
conduct inference for the sample average treatment effect.

11Randomized experiments have their own drawbacks. For example the usually high costs, the problem
of individuals assigned to the treatment group refusing to participate in the treatment, or conversely the
problem of individuals assigned to the control group trying to obtain alternative (similar) treatments (Smith
& Todd, 2005).
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might be more aware of the benefits of a job training program and would therefore be
more likely to enroll for such training. Besides that, individuals with a higher education
tend to have higher earnings. A difference in earnings between job training participants
and non-participants could be the result of differences in such confounding variables, and
not because of a causal effect of treatment. Thus, ignoring confounders could lead to a
biased estimate of the causal effect of attending job training on earnings. To overcome
this problem, the literature on treatment effects and program evaluation relies on different
methods to isolate the causal effect. The typical toolbox includes methods that rely on
the unconfoundedness assumption, difference-in-difference, synthetic control, instrumental
variable approaches, and regression discontinuity designs.12 These methods differ both in
terms of identifying assumptions and data requirements.

Two of the aforementioned methods are at the core of this dissertation: methods that
rely on the unconfoundedness assumption and difference-in-difference methods. The former
methods basically assume that selection into treatment is based on observable characteris-
tics.13 Difference-in-difference methods, by contrast, allow for some selection into treatment
based on unobservable characteristics, at the cost of making an assumption about time
trends. Although these methods are well-studied and widely applied in practice, there is
room for potential improvements and extensions.

Consider the methods that rely on unconfoundedness. In practice, commonly used es-
timators are regression or matching on the propensity score. In many cases, ordinary least
squares (OLS) regression is used to estimate the conditional outcome means, and logit or
probit to estimate the propensity score.14 In this context, there are at least two potential
improvements. First, instead of using either an estimator that relies only on the conditional
outcome means, or only on the propensity score, it could be beneficial to use hybrid estima-
tors. Hybrid estimators use both the conditional outcome means and the propensity score.
The idea of hybrid methods is to provide additional robustness. A question that arises in
this context is whether there is any cost - for example in terms of variance of these estimators
- for providing additional robustness. Second, instead of using OLS, logit, or probit, it could
be beneficial to employ more flexible methods to estimate the conditional outcome means
and the propensity score. This could be of interest in settings with many covariates, or if the
underlying relationships are unknown and possibly nonlinear and/or nonadditive.15 Again,
a question arises as to whether there is any cost for allowing flexible functions.

Difference-in-difference methods are commonly applied to estimate the total effect of
a treatment.16 Using data from pre- and post-treatment periods, difference-in-difference

12For an overview see for example Athey and Imbens (2017), Abadie and Cattaneo (2018), Imbens and
Wooldridge (2009), and Angrist and Pischke (2009).

13See footnote 8 in Chapter 1 for a more rigorous definition.
14The conditional outcome means denote the conditional expectation of the outcome given treatment and

covariates. The propensity score denotes the conditional probability of treatment given covariates.
15Following Diamond and Sekhon (2013), nonlinearity refers to the presence of quadratic terms (or higher

order polynomials) in the true underlying model, while nonadditivity refers to the presence of interaction
terms in the true underlying model.

16Difference-in-difference usually identifies the average treatment effect on the treated (ATT).
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is able to deal with the selection problem arising from unobserved confounding. When the
outcome of interest is non-negative and has a mass point at zero, we are sometimes interested
in a decomposition of the total effect into an extensive and an intensive margin effect. To
estimate the intensive margin effect, the estimation sample is usually restricted to individuals
with a positive outcome. However, this creates an additional selection problem. A possible
extension of the standard difference-in-difference estimator is therefore to analyze the case
in which the estimation sample is restricted to individuals with a positive outcome.

This dissertation addresses these potential improvements and extensions in Chapters 1
and 2. Chapter 3 presents an application of causal effect estimation in empirical economics.
The thesis thus consists of both methodological and applied chapters on the identification
and estimation of causal effects with observational data.

Chapter 1 focuses on methods that rely on the unconfoundedness assumption. Exam-
ples of these methods include regression estimators, matching estimators, inverse probability
weighting, and doubly robust estimators. These methods all rely on estimating either the
propensity score, the conditional outcome means, or both. There are thus two central de-
cisions: which treatment effect estimator to use (regression, matching, doubly robust, etc.),
and how to estimate the conditional outcome means and the propensity score. The goal of
Chapter 1 is to shed light on these two decisions. I focus on three research questions. First,
do hybrid methods estimate treatment effects more accurately than estimators that rely ei-
ther only on the propensity score or only on the conditional outcome means? Second, does
machine learning based estimation of the propensity score and/or the conditional outcome
means improve treatment effect estimation, compared to logit or OLS based estimation?
Third, how does the accuracy of the estimators depend on changes in the degree of linearity
and additivity of the underlying functions, or on changes in the strength of selection into
treatment? To answer these questions, I conduct two Monte Carlo simulation studies in
which the true treatment effects are known. Moreover, I conduct a within-study comparison
in the spirit of LaLonde (1986). The main contribution of this chapter is to provide empirical
insights on the two described potential improvements of treatment effect estimation under
unconfoundedness. First, I provide insights on the use of hybrid estimators as alternative to
estimators that rely only on the propensity score or only on the conditional outcome means.
Second, I provide insights on the use of machine learning methods to estimate the propensity
score and/or the conditional outcome means. In simulation studies or within-study compar-
isons, a central question is to what extent the findings can be generalized. The design of
the simulation studies affect the results. If, for example, the underlying relationships are all
linear and additive, flexible machine learning methods are likely to be of limited use. The
goal of this chapter is to demonstrate that there are indeed cases where hybrid methods or
machine learning based estimation are beneficial.

Chapter 2 is concerned with a methodological extension of the difference-in-difference
estimator.17 The idea is to use difference-in-difference to estimate the causal intensive mar-

17Chapter 2 is joint work with Markus Hersche. Both authors contributed equally to this chapter.
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gin effect. The causal intensive margin effect is defined as the treatment effect on the
outcome of individuals with a positive outcome irrespective of whether they are treated or
not. Even if treatment is randomly assigned, a mean comparison of treatment and control
groups with positive outcomes does not identify the causal intensive margin effect without
additional assumptions (Angrist, 2001). The main issue is a potential selection problem
that arises when conditioning on positive outcomes. Difference-in-difference methods were
developed to address selection problems. Using data from pre- and post-treatment periods,
difference-in-difference allows for some selection on unobservables. The main contribution
is to derive sufficient conditions under which the difference-in-difference estimator - condi-
tional on positive outcomes - identifies the causal intensive margin effect. In contrast to
standard difference-in-difference methods, two monotonicity assumptions are additionally
required to identify the causal intensive margin effect. These monotonicity assumptions are
indeed rather strong and thus limit the range of potential applications. Chapter 2 provides
the methodological foundation for an estimator used in Chapter 3.

Chapter 3 comprises an application of causal effect estimation in empirical economics.18

As many developed countries are forced to reform their pension systems, there is a need for a
detailed understanding of the labor supply behavior of older workers. The full retirement age
represents one of the main policy instruments for the government. A large body of literature
has focused on the estimation of the direct effect, that is, the labor supply response of
individuals directly affected by pension reforms (Mastrobuoni, 2009). However, the majority
of older workers are married, and several studies indicate that older couples coordinate their
exit from the labor force (Hospido & Zamarro, 2014). As a result, changes in incentives
of one member of the couple may have spillover effects on the labor supply of the spouse
(indirect effect). This chapter estimates the causal effect of the spouse reaching the full
retirement age on labor supply. In contrast to the majority of previous contributions, we
estimate the effect not only on labor market participation (extensive margin), but also on
working hours (intensive margin).

18Chapter 3 is joint work with Markus Hersche. Both authors contributed equally to this chapter.
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Chapter 1

Machine Learning Based Estimation
of Average Treatment Effects under
Unconfoundedness

1.1 Introduction

Estimating causal effects by means of observational data can be a challenging task. The main
difficulty is that the relationship between treatment and outcome is potentially confounded.
That is, there exist some variables that have an effect on both, treatment and outcome. As
a consequence, differences in outcomes between the treatment group and the control group
can arise for two reasons. First, because of the causal effect of treatment on the outcome,
and second, because of differences in the confounding factors. If one is interested in the
causal effect, it is therefore the second reason that causes problems.

The idea behind methods that rely on the unconfoundedness assumption is to eliminate
outcome differences that arise due to differences in the confounding factors. The central
assumption is that all confounding factors are observed.1 Examples of such methods in-
clude regression estimators, matching estimators, inverse probability weighting, and hybrid
methods such as doubly robust estimators. These methods rely on estimating either the
conditional outcome means, the propensity score, or both.2 In practice, these functions are
often estimated with conventional methods such as ordinary least squares (OLS) or logit.
The researcher then has to decide which variables to include in the model, and how to in-
clude them. In many cases, the specifications are linear and additive, without quadratic or
interaction terms.3 However, it is possible that the true underlying relationships are not
linear and additive. If the models are misspecified, this may lead to a biased estimate of
the causal effect. As an alternative to OLS and logit, one might consider estimating the
conditional outcome means and the propensity score by machine learning (ML) methods.

1See footnote 8 for a more rigorous definition.
2For a definition of the conditional outcome means and the propensity score, see Section 1.4.
3The definition of linearity and additivity follows Diamond and Sekhon (2013), see footnote 15.
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In recent years, ML methods have gained interest both in industry and in academia.
One of the reasons is the success of ML methods in problems concerned with prediction. In
this type of problems, the goal is to predict an outcome on the basis of a set of covariates
as accurately as possible. Although ML methods have been predominantly used for such
prediction problems, there is a growing literature on these methods being employed for
estimating causal effects.4 However, as Goller, Lechner, Moczall, and Wolff (2019) note, it
is not entirely clear that the successes achieved with prediction problems will also apply in
settings where one is interested in causal effects. A crucial difference is that the outcome of
interest is observed in prediction problems. It is thus possible to compare different models
on the basis of performance measures such as the root-mean-square error (RMSE). This is
not possible when estimating causal effects, because the true causal effect - at the individual
level - is not observed.

In the context of estimating treatment effects under the assumption of unconfounded-
ness, estimation involves two main decisions: first, the decision on which treatment effect
estimator to use (regression, matching, doubly robust, etc.); and second, how to estimate
the conditional outcome means and/or the propensity score. These two decisions form the
basis of my research questions.

This chapter aims to answer the following research questions. First, does estimating
the propensity score and/or the conditional outcome means with machine learning methods
increase accuracy of treatment effect estimation compared to OLS or logit based estimation
(within-estimator comparison)?5 Second, do hybrid methods estimate treatment effects more
accurately than estimators that rely either only on the propensity score or only on the
conditional outcome means (between-estimator comparison)? Third, how does the accuracy
of the estimators depend on changes in a) the degree of linearity and additivity in the
relationships between treatment and covariates and between outcome and covariates, and b)
the strength of selection into treatment?

To answer these questions I conduct two simulation studies. The advantage of the simu-
lation studies is that the true causal effect is known. It is therefore possible to compare the
performance of different treatment effect estimators in terms of RMSE, bias, and variance.
The first simulation study is based on a simulation of Diamond and Sekhon (2013), while the
second is based on the LaLonde (1986) dataset and follows the simulation design of Busso,
DiNardo, and McCrary (2014). The two simulation studies differ substantially. The first
is based on a stylized data generating process (DGP) and characterized by a constant and
additive treatment effect, good overlap between treated and untreated observations, and a
treated fraction of approximately 50%. The second is based on a real dataset. It allows for
heterogeneous treatment effects, exhibits bad overlap between treated and untreated obser-
vations, and includes only approximately 17% treated observations. In the first simulation

4For an overview, see for example Athey and Imbens (2017), Mullainathan and Spiess (2017), Athey
(2018), and Athey and Imbens (2019).

5Accuracy of treatment effect estimation refers to the RMSE of the treatment effect estimators, see
Section 1.6.5.
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study, I additionally consider different misspecification scenarios. Moreover, I conduct a
small within-study comparison in the spirit of LaLonde (1986).

I find that machine learning based estimators often estimate the treatment effect more
accurately than estimators relying on OLS and/or logit. The differences between machine
learning based estimators and estimators relying on OLS and/or logit are small when the
underlying relationships are linear and additive, or when selection into treatment is weak.
However, when the underlying relationships become nonlinear and nonadditive, or when the
strength of selection into treatment increases, the performance of machine learning based
estimators can be substantially better than OLS and/or logit based estimators. Moreover, I
find that hybrid estimators do not generally outperform estimators that rely either only on
the propensity score or only on the conditional outcome means. However, hybrid estimators
are in most cases among the estimators with the lowest RMSE. In many cases, hybrid estima-
tors exhibit the lowest bias, sometimes at the cost of an increased variance. It might therefore
be advantageous to employ hybrid methods to guard against misspecification, especially if
one is more concerned about bias than variance.

The remainder of the chapter is structured as follows. Section 1.2 presents a short review
of the literature. Section 1.3 describes the setting and the assumptions. Section 1.4 outlines
the structure of the estimation procedure. Section 1.5 presents an overview of the methods
used to estimate the conditional outcome means and the propensity score, while Section
1.6 discusses the treatment effect estimators. The two simulation studies are presented in
Section 1.7 and 1.8. Section 1.9 presents the within-study comparison. Section 1.10 presents
results from a supplementary analysis, analyzing how the estimator performance depends on
cross-fitting and repeated sample splitting. Finally, Section 1.11 concludes the chapter.

1.2 Literature Review

This chapter relates to the literature that evaluates estimators for average treatment effects
under the assumption of unconfoundedness. The challenge in such an evaluation is that the
true treatment effect is generally unobserved. Consequently, in order to make an evaluation,
we need either to create an artificial setting in which the true treatment effect is observed,
or use a setting in which a reliable proxy for the true treatment effect is available. These two
possibilities represent the two main strands of the literature to which this chapter is related.
The first strand is the literature that uses Monte Carlo simulation studies to assess the per-
formance of the estimators. The second strand is the literature on within-study comparisons,
where the true treatment effect is proxied by an estimate from a randomized experiment.
Compared to simulation studies, within-study comparisons have the disadvantage that there
is no guarantee that the unconfoundedness assumption holds. For this reason, within-study
comparisons are sometimes used to ”test” the unconfoundedness assumption, and not to
provide evidence on the performance of estimators.
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1.2.1 Monte Carlo Simulation Studies

The simulation study literature contains at least four different approaches for the design
of the simulation. The first approach uses what Advani, Kitagawa, and S loczyński (2019)
call stylized DGPs. Stylized DGPs are often characterized by a) covariates that are drawn
from normal or Bernoulli distributions, b) parametrically specified associations between the
variables, and c) a good overlap between treated and untreated observations (Frölich, 2004;
Lunceford & Davidian, 2004; Zhao, 2004). Such settings provide a high level of control
over the DGP, at the cost of less realistic DGPs and therefore lower external validity. The
simulation in Section 1.7 is based on a stylized DGP that was previously used by Setoguchi,
Schneeweiss, Brookhart, Glynn, and Cook (2008), Lee, Lessler, and Stuart (2010), Diamond
and Sekhon (2013), Pirracchio, Petersen, and Van Der Laan (2015), and Cannas and Arpino
(2019).

To increase the external validity of the simulations, the simulation literature has moved
towards using empirical Monte Carlo studies. In this type of simulations, the goal is to
generate datasets with distributions that are as similar as possible to real datasets. Advani
et al. (2019) distinguish between structured empirical Monte Carlo studies and placebo
empirical Monte Carlo studies. Structured empirical Monte Carlo studies fit parametric
distributions to a real dataset. New samples are then generated from the fitted distributions
(Abadie & Imbens, 2011; Busso et al., 2014; Diamond & Sekhon, 2013). The simulation
in Section 1.8 is based on the structured Monte Carlo simulation design of Busso et al.
(2014). Placebo empirical Monte Carlo studies directly draw control observations from a
real dataset and simulate a placebo treatment. The placebo treatment can be based on
a propensity score estimated in the full dataset - as for example in Huber, Lechner, and
Wunsch (2013), and Goller et al. (2019) - or by a matching approach, as for example in
Frölich, Huber, and Wiesenfarth (2017). Most recently, Athey, Imbens, Metzger, and Munro
(2019) propose a fourth approach which utilizes Generative Adversarial Networks (GANs).
The idea of GANs is to adjust a generator neural network that generates simulated data, until
a discriminator neural network is no longer able to distinguish between simulated and real
data. The usefulness of empirical Monte Carlo studies to rank treatment effect estimators
is questioned by Advani et al. (2019). They suggest the use of a series of estimators and a
comparison of the range of treatment effect estimates.

1.2.2 Within-Study Comparisons

Second, this chapter is related to the literature on within-study comparisons. This liter-
ature combines experimental data with nonexperimental data to conduct an evaluation of
treatment effect estimators. There are two different approaches within this literature. The
first approach relies on the assumption that the randomized experiment gives an unbiased
estimate of the true treatment effect. Subsequently, the experimental control group is substi-
tuted with a nonexperimental comparison group to mimic a situation in which no experiment
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is available. It is then analyzed whether the treatment effect estimators are able to recover
the true treatment effect from the experiment. This procedure was applied in the landmark
study by LaLonde (1986), as well as in subsequent contributions (Dehejia & Wahba, 1999,
2002). One drawback of this approach is that the experimentally estimated treatment effect
can be quite noisy. The second approach aims for a more direct analysis of the selection bias.
Instead of substituting the experimental control group with a nonexperimental comparison
group, the experimental treatment group is substituted with a nonexperimental comparison
group.6 The benefit of this approach is that the true treatment effect is known to be zero,
since no observation was actually treated. This approach was adopted, for example, by
Heckman, Ichimura, and Todd (1997), Heckman, Ichimura, Smith, and Todd (1998), and
Smith and Todd (2005), and is used in the within-study comparison in Section 1.9.

1.3 Setting and Assumptions

I consider the Rubin Causal Model (RCM) with an outcome Y and a binary treatment D.
Each individual i is characterized by two potential outcomes. The potential outcome in the
case of treatment is denoted by Y 1

i , the potential outcome in the case of no treatment is
denoted by Y 0

i . Since we observe one of the two potential outcomes only, the individual
treatment effect, defined as τi = Y 1

i − Y 0
i , is never observed. In this chapter I am interested

in the average treatment effect (ATE), defined as

τATE = E(Y 1
i − Y 0

i ) ,

and the average treatment effect on the treated (ATT),7 defined as

τATT = E(Y 1
i − Y 0

i |Di = 1) .

In the following, I refer to the ATE and the ATT as treatment effects. In addition, each
individual is characterized by a vector of covariates Xi. For a comprehensive introduction
to the RCM, see Imbens and Wooldridge (2009) or Imbens and Rubin (2015).

In the setting I consider, identification of the ATE and ATT relies on the following
assumptions: unconfoundedness, overlap, stable unit treatment value assumption (SUTVA),
and no effect of treatment on covariates.

The unconfoundedness assumption formally states that treatment is independent of po-
tential outcomes, conditional on covariates Xi = x, i.e.

(Y 1
i , Y

0
i ) ⊥⊥ Di |Xi = x for all x in the support of Xi. (1.1)

6The treatment indicator is then replaced to indicate membership to the experimental control group.
7More specifically, the interest is in the population versions - i.e. the population average treatment effect,

and the population average treatment effect on the treated. Therefore, the ATE captures the expected causal
effect for an individual chosen at random from the population. The ATT captures the expected causal effect
for an individual chosen at random from the subpopulation who received treatment.
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The assumption requires that all confounders - i.e. all variables affecting both treatment and
outcome - are observed.8 The assumption implies that treatment is as good as randomly
distributed conditional on Xi = x.9 For identification of the ATT, the unconfoundedness
assumption can be relaxed to Y 0

i ⊥⊥ Di|Xi = x. The unconfoundedness assumption (or sim-
ilar versions) is sometimes also called conditional independence assumption, selection on
observables, or exogeneity.

The overlap assumption concerns the joint distribution of treatment and covariates. For-
mally, the assumption states that the conditional probability of treatment (propensity score)
is strictly between zero and one, i.e.

0 < p(x) < 1 for all x in the support of Xi, (1.2)

where p(x) = P (Di = 1|Xi = x) is the propensity score. The overlap assumption requires
that, for all x in the support of Xi, both treated and untreated observations are available.
For identification of the ATT, the overlap assumption can be relaxed to p(x) < 1. The
combination of unconfoundedness and overlap is also called strong ignorability (Rosenbaum
& Rubin, 1983).

Furthermore, the Stable Unit Treatment Value Assumption (SUTVA) is assumed,

Yi = Y 1
i Di + Y 0

i (1−Di) . (1.3)

The SUTVA states that the observed outcome of any individual i depends only on the
treatment status of individual i, but not on any other treatment status of individual j 6= i.
Hence, spill-over and general equilibrium effects are assumed to be absent.

Lastly, it is assumed that there is no effect of treatment on covariates,

X1
i = X0

i = Xi . (1.4)

Conditioning on covariates which are themselves affected by the treatment would either re-
move part of the total causal effect we are interested in, or introduce a collider bias, depending
on the direction of the causal relationship between the covariate and the outcome.10

8This description of the unconfoundedness assumption is only correct in conjunction with the assumption
that there is no effect of treatment on covariates, see assumption (1.4). Furthermore, as Huber (2019) notes,
the unconfoundedness assumption is also satisfied if - conditional on the observed covariates - the effects from
unobserved confounders on treatment and outcome are ”blocked”. The concept of ”blocking”, also known as
”d-separation”, stems from the directed acyclic graph (DAG) approach to causality - see e.g. Pearl (2009),
or Imbens (2019) for a comparison of the DAG approach to the potential outcomes approach.

9A sufficient weaker version of the unconfoundedness assumptions is mean independence, i.e.
E(Y 1

i |Di, Xi) = E(Y 1
i |Xi) and E(Y 0

i |Di, Xi) = E(Y 0
i |Xi). As Imbens (2004) points out, it might be hard to

find a case where the weaker mean independence assumption is fulfilled, but the stronger unconfoundedness
assumption is violated.

10A collider bias occurs when we condition on a collider variable. A collider variable is a variable that is
affected by both the treatment and the outcome. Conditioning on a collider creates an association between
treatment and outcome, even if the true treatment effect is zero.
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1.4 Structure of the Estimation Procedure

This section presents an overview of the estimation procedure. Figure 1.1 illustrates the
different parts, which are briefly described below and explained in more detail in Sections
1.5 and 1.6.

Figure 1.1: Structure of the Estimation Procedure
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As described in Section 1.3, I am interested in estimating the ATE (simulation Section
1.7) or the ATT (simulation Section 1.8). Estimation of these treatment effects follows a
two-step procedure. In the first step, the conditional outcome means and/or the propensity
score are estimated. The conditional outcome means are defined as

m1(x) = E(Yi|Di = 1, Xi = x) and m0(x) = E(Yi|Di = 0, Xi = x) .

The propensity score is defined as

p(x) = P (Di = 1|Xi = x) .

In this chapter, I estimate these functions both with the conventional methods OLS (con-
ditional outcome means) and logit (propensity score), as well as with the machine learning
methods random forest and elastic net (see boxes at the top of Figure 1.1). These methods
are described in Section 1.5. To answer the first research question, I investigate whether
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machine learning based estimation of treatment effects is more accurate than estimation
based on conventional methods.

In the second step, the fitted values of the conditional outcome means and/or the propen-
sity score are plugged into the treatment effect estimators. I consider five different treatment
effect estimators (see boxes at the bottom of Figure 1.1). These estimators can be classified
into three categories. The Regression estimator in the first category uses only the conditional
outcome means to estimate the treatment effects. The propensity score methods in the sec-
ond category use only the propensity score to estimate the treatment effects. This category
includes the Inverse Probability Weighting (IPW) and the Matching on PS estimators. The
third category consists of hybrid estimators using both the conditional outcome means as
well as the propensity score to estimate the treatment effects. This category includes the
Doubly Robust and the Bias-Corrected (BC) Matching on PS estimators. The treatment
effect estimators are described in Section 1.6. To answer the second research question, I
investigate whether hybrid methods estimate treatment effects more accurately than esti-
mators that rely either only on the propensity score or only on the conditional outcome
means.

1.5 Estimation Conditional Outcome Means and
Propensity Score

In this section I describe the methods used to estimate the conditional outcome means and
the propensity score. The fitted values of these functions are plugged into the treatment
effect estimators described in Section 1.6. In the last part of this section, I describe certain
additional estimation issues.

1.5.1 Conventional Methods

The conventional based estimators use OLS to estimate the conditional outcome means and
logit to estimate the propensity score. Ordinary least squares and logit are widely used
methods in empirical economics. For reasons of space, I do not describe these methods here.
A comprehensive overview of OLS and logit can be found, for example, in Cameron and
Trivedi (2005).

1.5.2 Machine Learning Methods

In this section I present the basics of random forests and elastic net. There are several
reasons for using these two methods. Both machine learning methods are very intuitive,
easily implemented using standard software packages, and do not require extensive hyper-
parameter tuning (see section 1.5.3). As Goller et al. (2019) note, the two methods follow
a different approach to approximate the unknown propensity score or conditional outcome
means. While random forests approximate the unknown function locally, elastic net aims to
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approximate the unknown function globally.11 For a more in-depth overview, see for example
Hastie, Tibshirani, and Friedman (2001), James, Witten, Hastie, and Tibshirani (2013), and
Efron and Hastie (2016).

Random Forests

A random forest is a collection of many regression or classification trees (Breiman, 2001). A
regression or classification tree is a recursive partitioning of the covariate space into exhaus-
tive and mutually exclusive subgroups.12 In each subgroup of the partition, a simple model
is fitted to obtain the predicted outcome for observations with covariates corresponding to
this subgroup. Often, the simple model is just a constant, and the predicted outcome for
observations with covariates corresponding to subgroup k is given by the group average of
observations in group k.

To obtain the recursive partitioning of the covariate space, the algorithm starts with the
unpartitioned covariate space. Only binary splits are considered. For the first split, the
algorithm aims to find a splitting variable v and a splitting point s which reduce a given loss
function the most. For example, the regression tree algorithm used in this chapter minimizes

min
v,s

[ ∑
xi∈R1(v,s)

(yi − c1)2 +
∑

xi∈R2(v,s)
(yi − c2)2

]
, (1.5)

where R1(v, s) = {X|Xv ≤ s} and R2(v, s) = {X|Xv > s} are the subgroups defined by the
binary covariate split, cg = 1

ng

∑
xi∈Rg(v,s) yi for g ∈ {1, 2} is the average outcome in subgroup

Rg(v, s), and ng is the number of observations in subgroup Rg(v, s).
After each split, the algorithm continues to find a new splitting variable v and a splitting

point s in the subgroups defined by the previous split. Figure 1.2 presents an illustrative
example of a regression tree (left panel) and the corresponding partitioning of the two-
dimensional covariate space (right panel). The regression tree was fit on the LaLonde (1986)
data with earnings in 1978 as outcome (in 1000), and age and education as covariates.

11Instead of elastic net, Goller et al. (2019) consider Lasso.
12If the outcome is continuous, the tree is called a regression tree. If the outcome is categorical, the tree

is called a classification tree.
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Figure 1.2: Illustration of a regression tree
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The recursive partitioning is repeated until some stopping criterion is reached, for ex-
ample if fewer than five observations were to end up in a subgroup. Due to the recursive
partitioning, regression trees automatically model interactions between covariates.

A random forest is a large collection of individual trees. Usually, the individual trees are
grown deeply. This means that the recursive splitting is applied many times. The resulting
individual tree has lower bias, but higher variance than a shallow tree with only a few splits.
The final prediction is obtained by averaging the predictions of all individual trees. To
decrease the variance of the random forest estimator, the individual trees are decorrelated.
To decorrelate the individual trees, two forms of randomness are introduced in a random
forest. First, for each new tree, a bootstrap sample is drawn from the original data, and
only the bootstrap sample is used to grow the tree. Second, at each split, only a randomly
drawn subset of the covariates is considered to split upon. The size of the randomly drawn
subset is sometimes regarded as a tuning parameter.

Elastic Net

Elastic net is a penalized regression method (Zou & Hastie, 2005). Penalized regression
means that the objective function includes a penalty term on the coefficients. As a result,
the estimated coefficients are shrunken towards zero, and some coefficients are directly set
to zero (variable selection). To estimate the conditional outcome means, I use the linear
regression version. In this case, the elastic net estimator is the solution to

min
β0,β

1
2N

N∑
i=1

(yi − β0 − x′iβ)2 + λ
[
(1− α)||β||22/2 + α||β||1

]
. (1.6)

To estimate the propensity score, I use the logistic regression version. In this case, the
elastic net estimator is the solution to

min
β0,β
−
{

1
N

N∑
i=1

[yi(β0 + x′iβ)− log(1 + exp(β0 + x′iβ))]
}

+ λ
[
(1− α)||β||22/2 + α||β||1

]
, (1.7)

16



where the propensity score is modelled as p(x) = 1
1+exp[−(β0+x′β)] . The coefficients are

estimated with penalized maximum likelihood.
For α = 1, the estimator is called least absolute shrinkage and selection operator (Lasso)

and penalizes the absolute values of the coefficients.13 For α = 0, the estimator is called
ridge regression and penalizes the squared values of the coefficients. For 0 < α < 1, the
estimator is called elastic net and employs a combination of Lasso and ridge penalization.
Due to the Lasso penalization, some coefficients are set directly to zero (Efron & Hastie,
2016, p. 305).14 The strength of the penalization is determined by the penalty parameter
λ. The larger λ, the stronger the penalization and the more the coefficients are shrunken
towards zero. For λ → ∞, all coefficients are set to zero. For λ = 0, the OLS solution
occurs.

Compared to OLS, elastic net allows for the bias-variance trade-off.15 Due to the pe-
nalization, elastic net is a biased estimator. The bias-variance trade-off is controlled by the
penalty parameter λ. The larger λ, the higher the bias and the smaller the variance. The
overall goal is to achieve a smaller (mean squared) prediction error because the variance is
reduced more than the introduced (squared) bias.

1.5.3 Practical Estimation Issues

For the estimation of m1(x), m0(x), and p(x), I apply cross-fitting as proposed in Cher-
nozhukov et al. (2018). In the default specification, I randomly split the data into five folds.
I set aside one fold and estimate the functions m1(x), m0(x), and p(x) using the remaining
four folds. Then, using the fitted functions, I predict m̂1(Xi), m̂0(Xi), and p̂(Xi) for all
observations in the remaining fold. This procedure is repeated until each fold has been left
out once and thus until each observation has predictions m̂1(Xi), m̂0(Xi), and p̂(Xi). In
Section 1.10, I investigate the effect of the number of cross-fitting folds on the performance
of the treatment effect estimators.

Many machine learning methods rely on tuning parameters. Tuning parameters have to
be chosen prior to the estimation, and influence the bias and the variance of the estimator.
For the random forest, this is for example the number of randomly chosen variables to
consider for a split. For elastic net, this is the penalty term λ and the mixing parameter α.

In practice, the tuning parameters are often chosen using cross-validation. The goal of
cross-validation is to obtain an estimate of the out-of-sample performance of an estimator -
i.e. to estimate how well the estimator is able to predict unseen data. First, the researcher
chooses a grid of possible values for the tuning parameter. Then, for each possible value
(or combination) of the tuning parameter(s), the out-of-sample performance is estimated via
cross-validation. Similar to cross-fitting, the data is randomly divided into K folds. Then,

13The covariates are standardized prior to the estimation. Otherwise, asymmetric penalization is imposed,
which is usually not desired.

14Generally, a combination of Lasso and ridge regression does not set as many coefficients to zero as Lasso
only.

15Ordinary least squares is an unbiased estimator and thus does not allow for the bias-variance trade-off.
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K − 1 folds are used to fit the function, followed by predicting the outcomes in the left-out
fold. The procedure is repeated until each observation was once in the left-out fold and
thus until each observation has an out-of-sample predicted outcome. Next, a performance
measure such as the RMSE is calculated. The whole process is repeated for a new value
in the grid of tuning parameters. Finally, the tuning parameter corresponding to the best
out-of-sample performance is selected as final tuning parameter.16

In this chapter, I use 10-fold cross-validation to choose the penalty parameter λ for elastic
net. For computational reasons, I do not use cross-validation to choose the mixing parameter
α, but instead set α = 0.5. Moreover, for random forests, I do not apply cross-validation to
choose the tuning parameters. Instead, I follow the software package default specifications.17

1.6 Estimation Treatment Effects (ATE/ATT)

In this section I describe the five treatment effects estimators. All estimators described in
this section use predicted values of the propensity score and/or the conditional outcome
means, for which estimation is described in Section 1.5. Throughout this section, I assume
a random sample of N observations of which NT are treated.

1.6.1 Regression Estimator

Regression estimators (see Hahn (1998), Heckman et al. (1997), Heckman, Ichimura, and
Todd (1998), Imbens, Whitney, and Ridder (2006)) estimate the ATE as the difference in
the predicted values of the conditional outcome means, averaged over the sample.18 Hence,
the ATE is estimated as

τ̂ATE = 1
N

N∑
i=1

[
m̂1(Xi)− m̂0(Xi)

]
. (1.9)

Similarly, the ATT is estimated as the difference between the observed outcomes of the
treated and their predicted values of the conditional outcome mean fitted in the untreated
sample. Hence, for the ATT, we do not need to estimate the conditional outcome mean

16There are alternatives in choosing the final tuning parameter, e.g. the one-standard error rule, which
chooses the least complex model whose error is within one standard error of the best model.

17In the R package randomForest, the parameter defining the number of randomly chosen variables to
consider for a split, for example, is called mtry and its default is p/3 for regression problems and √p for
classification problems, where p is the number of variables.

18An alternative version would plug in the observed outcome, i.e.

τ̂AT E = 1
N

N∑
i=1

[
DiYi + (1−Di)m̂1(Xi)−Dim̂0(Xi)− (1−Di)Yi

]
. (1.8)

If the average of the observed outcome for the treated and the control is equal to the average predicted
outcome for the treated and the untreated, the two versions are equivalent.
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fitted in the treated sample. The ATT is estimated as

τ̂ATT = 1
NT

N∑
i=1

Di

[
Yi − m̂0(Xi)

]
. (1.10)

It is important to note that the regression estimator using OLS to estimate m1(x) and m0(x)
is generally different from the OLS regression of Y on D and X.19 This implies that an OLS
regression of Y on D and X does not estimate the ATE or ATT except for special cases
(see Angrist and Pischke (2009) and Abadie and Cattaneo (2018)). A valid alternative to
estimating m1(x) and m0(x) separately using OLS is to estimate a single OLS regression of
Y on a constant, D, X, and D(X − X̄), where X̄ is the sample average of X.

1.6.2 Propensity Score Methods

Inverse Probability Weighting

Inverse probability weighting (see Horvitz and Thompson (1952), Robins, Rotnitzky, and
Zhao (1994), Hirano, Imbens, and Ridder (2003)) relies on reweighting the outcome such
that treated individuals with a high propensity score receive a smaller weight than treated
individuals with a low propensity score. Similarly, untreated individuals with a low propen-
sity score receive a smaller weight than untreated individuals with a high propensity score.
The idea of reweighting is again to make the treated and untreated groups comparable in
terms of their covariate distributions.
The ATE is estimated by the average difference in reweighted outcomes

τ̂ATE = 1
N

N∑
i=1

[
DiYi
p̂(Xi)

− (1−Di)Yi
1− p̂(Xi)

]
. (1.11)

Similarly, the ATT is estimated as

τ̂ATT = 1
N

N∑
i=1

[
DiYi
c
− (1−Di)Yip̂(Xi)

(1− p̂(Xi))c

]
. (1.12)

where c is the fraction of treated, i.e. c = 1
N

∑N
i=1 Di. A potential problem with IPW is

that the weights can become very large when the estimated propensity scores are very close
to zero or one (Imbens & Wooldridge, 2009). As a result, the variance of the estimator

19In a setting where X is saturated - i.e. with J dummy variables dj , where dij = 1{Xi = xj} - the
coefficient of D in the OLS regression of Y on D and X equals

τOLS =
J∑

j=1
(E[Yi|Di = 1, Xi = xj ]− E[Yi|Di = 0, Xi = xj ])ωj ,

with weights ωj = V ar(Di|Xi=xj)P (Xi=xj)∑J

l
V ar(Di|Xi=xl)P (Xi=xl)

(Abadie & Cattaneo, 2018; Angrist & Pischke, 2009). The ATE

estimator can be written in a similar form, but with weights ωk = P (Xi = xk), and the ATT estimator with
weights ωk = P (Xi = xk|Di = 1). As Angrist and Pischke (2009) and Abadie and Cattaneo (2018) point
out, OLS of Y on D and X estimates a variance-weighted ATE.
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increases. For this reason, I apply a trimming rule (see Section 1.6.4).

Matching on Propensity Score

Rosenbaum and Rubin (1983) have demonstrated that unconfoundedness implies indepen-
dence of treatment and potential outcomes conditional on the propensity score, that is
(Y 1

i , Y
0
i ) ⊥⊥ Di|p(Xi). As a result, there is no confounding problem for observations with

the same propensity score. The idea of matching on the propensity score (see Heckman,
Ichimura, and Todd (1998), Dehejia and Wahba (2002), Abadie and Imbens (2016)) is to
estimate the missing potential outcome by averaging the outcomes of the nearest neighbors
in the opposite treatment group. The nearest neighbors are the observations with the small-
est absolute difference in the propensity score. In this chapter, I apply one-to-one nearest
neighbor matching with replacement. One-to-one means that only one nearest neighbor is
considered for each individual. Matching with replacement implies that a given observation
can be matched to more than one observation of the opposite treatment group. The result
of Rosenbaum and Rubin (1983) is based on the true propensity score p(x). In practice, the
true propensity score is usually not observed.20 The true propensity score is then replaced
by the estimated propensity score.

Let `(i) denote the nearest neighbor of individual i in the opposite treatment group.
Formally, `(i) equals integer j ∈ {1, . . . , N}, if Dj 6= Di, and

|p̂(Xj)− p̂(Xi)| = min
k:Dk 6=Di

|p̂(Xk)− p̂(Xi)|, (1.13)

where p̂(·) is the estimated propensity score.21

The missing potential outcome of each observation is imputed by the outcome of the
nearest neighbor. Then, the ATE is estimated as the average difference between the observed
outcome and the estimated missing potential outcome,

τ̂ATE = 1
N

N∑
i=1

[
Di(Yi − Y`(i)) + (1−Di)(Y`(i) − Yi)

]
. (1.14)

Similarly, the ATT is estimated as the average difference between the observed outcome
and the estimated missing potential outcome among the treated,

τ̂ATT = 1
NT

N∑
i=1

Di

[
Yi − Y`(i)

]
. (1.15)

20An exception where the true propensity score is known are experiments, where treatment assignment
is either completely randomized or based on observed characteristics. However Abadie and Imbens (2016)
have shown that it is beneficial to use the estimated propensity score even when the true propensity score is
known.

21Notation and definition based on Imbens and Wooldridge (2009).
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1.6.3 Hybrid Methods

Finally, I consider hybrid methods that combine the aforementioned estimators. The goal
of hybrid methods is to make the estimators more robust.

Weighting and Regression (Doubly Robust)

Doubly robust estimation (see Robins et al. (1994), Robins and Rotnitzky (1995), Bang and
Robins (2005)) combines weighting and regression. The estimator is consistent if either the
conditional outcome means or the propensity score is correctly specified.
Chernozhukov et al. (2018) discuss the use of machine learning methods for this estimator
in a high-dimensional setting.
The ATE is estimated as

τ̂ATE = 1
N

N∑
i=1

[
m̂1(Xi)− m̂0(Xi) + Di(Yi − m̂1(Xi))

p̂(Xi)
− (1−Di)(Yi − m̂0(Xi))

1− p̂(Xi)

]
. (1.16)

Similarly, the ATT is estimated as

τ̂ATT = 1
N

N∑
i=1

[
Di(Yi − m̂0(Xi))

c
− (1−Di)(Yi − m̂0(Xi))p̂(Xi)

(1− p̂(Xi))c

]
. (1.17)

where c is the fraction of treated, i.e. c = 1
N

∑N
i=1 Di.

Matching and Regression (Bias-Corrected Matching on PS)

Bias-corrected matching combines matching and regression. The idea of bias-corrected
matching was introduced by Abadie and Imbens (2011), after Abadie and Imbens (2006)
had demonstrated that matching can be biased.22 The findings of Abadie and Imbens (2006,
2011) relate primarily to matching on more than one continuous covariate. As Imbens (2004)
points out, matching on the propensity score matches only on a single variable. As a result,
the bias vanishes asymptotically.

The idea of bias-corrected matching is to adjust the imputed potential outcome by an
estimate of this bias. As an estimate of this bias, the above authors suggest the difference
in the conditional outcome means.

Therefore, the missing potential outcome of each observation is imputed by the out-
come of the nearest neighbor, adjusted by the difference in the conditional outcome means.
Then, the ATE is estimated as the average difference between the observed outcome and the
estimated missing potential outcome,

22The problem is that the imputed missing potential outcome Y`(i) is unbiased form0(X`(i)) andm1(X`(i)),
but not for m0(Xi) and m1(Xi).
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τ̂ATE = 1
N

N∑
i=1

[
Di(Yi−[Y`(i)+m̂0(Xi)−m̂0(X`(i))])+(1−Di)([Y`(i)+m̂1(Xi)−m̂1(X`(i))]−Yi)

]
.

(1.18)
Similarly, the ATT is estimated as the average difference between the observed outcome

and the estimated missing potential outcome among the treated,

τ̂ATT = 1
NT

N∑
i=1

Di(Yi − [Y`(i) + m̂0(Xi)− m̂0(X`(i)]) . (1.19)

1.6.4 Trimming

The overlap assumption - also called common support assumption - is a central assumption
for the treatment effect estimators discussed in this chapter (see Section 1.3). In practice,
there is often limited overlap or even no overlap in some region of the covariate space (Lechner
& Strittmatter, 2019). That is, for some x in the support of Xi, we have only a few or even
no observations in either the treated or the control group. As Crump, Hotz, Imbens, and
Mitnik (2009) note, this can increase the bias and variance of the treatment effect estimators.
Given the result of Rosenbaum and Rubin (1983), one way to analyze overlap is to compare
the histograms of propensity scores for the treated and untreated. The overlap assumption
is violated if there are values of the propensity score for which only treated or only control
individuals exist. In the population, the overlap assumption is fulfilled when 0 < p(x) < 1
(Lechner & Strittmatter, 2019). As Lechner and Strittmatter (2019) point out, this does not
guarantee, however, that the overlap assumption is satisfied in the sample.

A related problem occurs when the propensity score of treated and control observations
is close to 0 or 1. These observations receive a relatively large weight in the estimation,
which can also increase the variance of the estimators.

Lechner and Strittmatter (2019) discuss several approaches to dealing with overlap prob-
lems. In this chapter, I apply two trimming rules. First, I discard observations with an esti-
mated propensity score larger (smaller) than the maximum (minimum) estimated propensity
score among the control (treated) group. Second, I discard observations with an estimated
propensity score larger (smaller) than 0.99 (0.01).23 Generally, this procedure changes the
(sub-)population for which the treatment effect is estimated.

1.6.5 Performance Measures

To measure the performance of the treatment effect estimators, I use primarily the root-
mean-square error (RMSE). In addition, I consider the absolute bias (|Bias|) and the stan-
dard deviation (SD) of the estimators. These performance measures are related to each other

23For the ATT estimation, I only discard observations with an estimated propensity score larger than
these thresholds, but not those lower than the described thresholds.
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in the following way
RMSE =

√
Bias2 + SD2. (1.20)

Hence, the MSE (squared RMSE) can be decomposed into the squared bias and the variance
of the estimator.
The RMSE of an estimator e is defined as

RMSEe =

√√√√ 1
R

R∑
r=1

(τ̂e,r − τ)2 , (1.21)

where R is the number of simulation replications, τ̂e,r is the estimated treatment effect of
estimator e in simulation replication r, and τ is the true treatment effect (ATE or ATT).
The term accuracy of an estimator refers to the RMSE of an estimator.
The absolute bias of an estimator e is defined as

|Bias|e =
∣∣∣∣ 1
R

R∑
r=1

(τ̂e,r − τ)
∣∣∣∣ . (1.22)

The standard deviation of an estimator e is defined as

SDe =

√√√√ 1
R

R∑
r=1

(τ̂e,r − τ̂e)2 , (1.23)

where τ̂e = 1
R

∑R
r=1 τ̂e,r is the average of the estimated treatment effects.

1.6.6 Software

Throughout the analysis, I use the software R (R Core Team, 2019). To fit the random
forests, I use the randomForest package (Liaw & Wiener, 2002). For elastic net, I use the
glmnet package (Friedman, Hastie, & Tibshirani, 2010). The treatment effect estimators
based on matching employ the Matching package (Sekhon, 2011). The other treatment
effect estimators are self-implemented.

1.7 Stylized Simulation Study

The DGP of the first simulation study is based on the simulation design of Diamond and
Sekhon (2013), which was also used in Setoguchi et al. (2008), Lee et al. (2010), Pirracchio
et al. (2015) and Cannas and Arpino (2019). From an applied perspective, the design of
this simulation study is rather unrealistic. The covariates are either standard normal or
Bernoulli distributed and independent of each other. The relationship between treatment
and covariates is specified such that the resulting distribution of propensity scores exhibits
a good overlap of control and treated observations.
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1.7.1 Data Generating Process

In the default specification, a simulated dataset consists of 1000 observations with ten co-
variates, six of them are dummy variables and four continuous variables. The covariates are
distributed as follows:

X1 ∼ Ber(0.5), X3 ∼ Ber(0.5), X5 ∼ Ber(0.5),
X6 ∼ Ber(0.5), X8 ∼ Ber(0.5), X9 ∼ Ber(0.5),

X2 ∼ N(0, 1), X4 ∼N(0, 1), X7 ∼ N(0, 1), X10 ∼ N(0, 1).

For the within-estimator comparison as well as for the between-estimator comparison, I
consider a default scenario in which the relationships between treatment and covariates and
between outcome and covariates are moderately nonlinear and nonadditive.24 The nonlin-
earity and nonadditivity is introduced by adding quadratic terms and interaction terms. In
Section 1.7.3, I analyze changes in the data generating process. First, I analyze the effect
of changes in the degree of linearity and additivity on the performance of the estimators.
Second, I analyze the effect of changes in the strength of selection into treatment.

The relationship between treatment and covariates includes seven main effects, three
quadratic terms, and ten interaction terms.25 The specification is given by:

D∗ =β0 + β1X1 + β2X2 + β3X3 + β4X4 + β5X5 + β6X6 + β7X7+
β2X

2
2 + β4X

2
4 + β7X

2
7 + 0.5β1X1X3 + 0.7β2X2X4 + 0.5β3X3X5+

0.7β4X4X6 + 0.5β5X5X7 + 0.5β1X1X6 + 0.7β2X2X3 + 0.5β3X3X4+
0.5β4X4X5 + 0.5β5X5X6 ,

(1.24)

with β0 = 0, β1 = 0.8, β2 = −0.25, β3 = 0.6, β4 = −0.4, β5 = −0.8, β6 = −0.5, β7 = 0.7.26

The observed treatment indicator D is drawn from a Bernoulli distribution with proba-
bility equal to the propensity score:

D ∼ Ber

(
1

1 + exp(−D∗)

)
, (1.25)

where the propensity score is given by the logistic transformation on D∗.
Similarly, the observed outcome is a function of the treatment indicator, seven main

effects, three quadratic terms, ten interaction terms, and a noise term. Here the simulation
design differs from Diamond and Sekhon (2013) in two ways. First, they include only the
seven main effects and therefore consider a linear and additive relationship between outcome
and covariates. Second, they do not include a noise term in the outcome specification. The

24The definition of nonlinearity and nonadditivity follows Diamond and Sekhon (2013), see footnote 15.
25The covariates are divided into three types. The covariates X1, X2, X3, and X4 have an effect on both

treatment and outcome (confounders). The covariates X5, X6, and X7 have an effect only on treatment,
while covariates X8, X9, and X10 have an effect only on the outcome.

26This is scenario G in Diamond and Sekhon (2013).
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specification is given by:

Y = τD + α0 + α1X1 + α2X2 + α3X3 + α4X4 + α8X8 + α9X9 + α10X10+
α2X

2
2 + α4X

2
4 + α10X

2
10 + 0.5α1X1X3 + 0.7α2X2X4 + 0.5α3X3X4+

0.7α4X4X8 + 0.5α8X8X10 + 0.5α1X1X10 + 0.7α2X2X3 + 0.5α3X3X9+
0.5α4X4X10 + 0.5α9X9X10 + ε ,

(1.26)

with τ = −0.4 being the constant treatment effect, α0 = −3.85, α1 = 0.3, α2 = −0.36, α3 =
−0.73, α4 = −0.2, α8 = 0.71, α9 = −0.19, α10 = 0.26, and ε being a noise term from a normal
distribution with mean 0 and variance σ2

ε . In an attempt to approximately balance the noise
in the treatment and outcome specification, σ2

ε is chosen such that the pseudo R2 of the
treatment indicator is approximately equal to the R2 of the outcome specification.27 Since
the treatment effect is constant, there is no difference between the ATE and the ATT. In
the estimation, I use the treatment effect estimators for the ATE.

1.7.2 Misspecification Scenarios

In theory, the regression estimator is consistent if the conditional outcome means are correctly
specified. Likewise, the propensity score methods are consistent if the propensity score is
correctly specified. The hybrid estimators are consistent if either the conditional outcome
means or the propensity score is correctly specified.

In this simulation I depart from the situation in which the conditional outcome means
and the propensity score are always correctly specified. I consider four scenarios. The scenar-
ios differ in terms of misspecification of the conditional outcome means and the propensity
score. As described in Section 1.7.1, the DGP is specified such that the true conditional out-
come means are linear-regression-type functions, including the main effects of the covariates,
quadratic terms, and interaction terms. Similarly, the true propensity score is a logit-type
function, including the main effects of the covariates, quadratic terms, and interaction terms.
Hence, a correctly specified conditional outcome mean is estimated with OLS on the cor-
rect set of variables. The correct set of variables includes the main effects, quadratic terms,
and interaction terms that were used to generate the data. A correctly specified propensity
score is estimated with logit on the correct set of variables. Misspecification is introduced by
omitting the quadratic and interaction terms in the estimation, or by using machine learning
methods instead of OLS and logit.

In misspecification scenario I, both the propensity score and the conditional outcome
means are correctly specified. This means that a) the propensity score p(x) is estimated
using logit on the correct set of variables, and b) the conditional outcome means m1(x) and
m0(x) are estimated using OLS on the correct set of variables. As no machine learning based
estimation is involved, this scenario is only of limited interest in this context, and the results
are presented only in the Appendix.

27See Appendix 1.A.1
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In misspecification scenario II, only the propensity score is correctly specified, and the
conditional outcome means are misspecified. This means that the propensity score is esti-
mated as in misspecification scenario I. The conditional outcome means are estimated using
either a) OLS on the set of main variables, i.e. omitting the quadratic and interaction terms,
or b) random forests and elastic net. For random forests, only the main variables are in-
cluded. For elastic net, the set of main variables and all possible quadratic and two-way
interaction terms are included.

In misspecification scenario III, only the conditional outcome means are correctly spec-
ified, and the propensity score is misspecified. This means that the conditional outcome
means are estimated as in misspecification scenario I. The propensity score is estimated us-
ing either a) logit on the set of main variables, i.e. omitting the quadratic and interaction
terms, or b) random forests and elastic net. For random forests, only the main variables are
included. For elastic net, the set of main variables and all possible quadratic and two-way
interaction terms are included.

In misspecification scenario IV, both the propensity score and the conditional outcome
means functions are misspecified. The misspecified functions are estimated as in misspecifi-
cation scenarios II and III.

1.7.3 Results

Within-Estimator Comparison

Before I elaborate on the results of the different misspecification scenarios, I demonstrate
that this simulation design actually generates propensity score distributions with fairly good
overlap. Figure 1.3 presents the median histogram of the trimmed propensity scores. The
left panel plots the estimated (bars) and true (lines) propensity scores for misspecification
scenarios I/II, i.e. for a correctly specified propensity score. It can be seen that the distri-
bution of estimated propensity scores closely follows the distribution of the true propensity
scores. The right panel plots the estimated and true propensity scores for misspecification
scenarios III/IV, i.e. for a misspecified propensity score. In this case there is a consider-
able difference between estimated propensity scores and true propensity scores. Logit and
random forest, in particular, overestimate the fraction of propensity scores close to 0.5, and
underestimate the fraction of propensity scores close to 0 and 1.28

28The difference in the histogram of true propensity scores between the left and right panels of Figure 1.3
is due to the trimming (see Section 1.6.4).
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Figure 1.3: Distribution of Estimated Propensity Scores

(a) MS I/II: PS correctly specified
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(b) MS III/IV: PS misspecified
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Note: The left and right panels represent misspecification scenarios I/II and III/IV. The graph
indicates the median (over 5000 simulation replications) histogram of estimated propensity scores
by logistic regression (Logit), random forests (RF), and elastic net (Elnet). The darker gray bars
(line) represent the distribution of the estimated (true) propensity scores of control observations,
the lighter gray bars (line) represent the distribution of the estimated (true) propensity scores of
treated observations.

This section compares - for each treatment effect estimator - conventional based estima-
tion (OLS and logit) to machine learning based estimation (random forest and elastic net).
Since there is no difference between conventional and machine learning based estimation
in misspecification scenario I (propensity score and conditional outcome means correctly
specified), the results for this misspecification scenario are not presented.

Misspecification Scenario II: Propensity score correctly specified, conditional
outcome means misspecified
The results for the misspecification scenario in which the propensity score is correctly spec-
ified, but the conditional outcome means are misspecified, are presented in Figure 1.4.
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Figure 1.4: Within-Estimator Comparison for Misspecification Scenario II
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Note: Simulation based on 5000 replications. The bars display the relative change in RMSE of
machine learning based estimation of the ATE (random forest in the left panel, elastic net in the
right panel), compared to conventional based estimation of the ATE (OLS/Logit). A negative
value indicates that the RMSE of the machine learning based estimator was lower, i.e. that the
treatment effect was estimated more accurately with machine learning methods.

Since IPW and Matching on PS use only the (correctly specified) propensity score, there
is no difference between conventional and machine learning based estimators. For BC Match-
ing on PS, Regression, and Doubly Robust, there are improvements in the RMSE when the
conditional outcome means are estimated with ML methods. The relative improvements are
moderate (2%-7%) for the hybrid methods BC Matching on PS and Doubly Robust, and sub-
stantial (25% and 36%) for the Regression estimator. To sum up, I find no improvements, or
only minor ones, for methods employing the correctly specified propensity score, but sizable
improvements for methods employing only the misspecified conditional outcome means.

Misspecification Scenario III: Conditional outcome means correctly specified,
propensity score misspecified
The results for the misspecification scenario in which the conditional outcome means are
correctly specified, but the propensity score is misspecified, are presented in Figure 1.5.
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Figure 1.5: Within-Estimator Comparison for Misspecification Scenario III
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Note: Simulation based on 5000 replications. The bars display the relative change in RMSE of
machine learning based estimation of the ATE (random forest in the left panel, elastic net in the
right panel), compared to conventional based estimation of the ATE (OLS/Logit). A negative
value indicates that the RMSE of the machine learning based estimator was lower, i.e. that the
treatment effect was estimated more accurately with machine learning methods.

In this misspecification scenario, Regression uses only the (correctly specified) conditional
outcome means. As a result, there is no difference between conventional and machine learning
based estimators. For IPW and Matching on PS, there are large improvements in the RMSE
when the propensity score is estimated with ML methods. The relative improvements range
between 28% and 43%. The hybrid estimators Doubly Robust and BC Matching on PS
estimate the ATE up to 12% less accurately when the propensity score is estimated with
machine learning methods. As demonstrated in the between-estimator comparison in the
next section, this is due to an increase in the variance of these estimators. To sum up,
I find sizable improvements for methods employing only the misspecified propensity score.
Estimators employing the correctly specified conditional outcome means are either unaffected
by design (Regression), or perform somewhat worse (Doubly Robust and BC Matching on
PS).

Misspecification Scenario IV: Both propensity score and conditional outcome
means misspecified
The results for the misspecification scenario in which both the propensity score and the
conditional outcome means are misspecified are presented in Figure 1.6.
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Figure 1.6: Within-Estimator Comparison for Misspecification Scenario IV
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Note: Simulation based on 5000 replications. The bars display the relative change in RMSE of
machine learning based estimation of the ATE (random forest in the left panel, elastic net in the
right panel), compared to conventional based estimation of the ATE (OLS/Logit). A negative
value indicates that the RMSE of the machine learning based estimator was lower, i.e. that the
treatment effect was estimated more accurately with machine learning methods.

The RMSE improvements of IPW and Matching on PS are the same as they are in
misspecification scenario III. This is because IPW and Matching on PS rely only on the
propensity score, which is misspecified in the same way in both misspecification scenarios.
Similarly, since Regression relies only on the conditional outcome means, the RMSE improve-
ment of Regression is the same as in misspecification scenario II. For the hybrid estimators
BC Matching on PS and Doubly Robust, I find substantial improvements in RMSE when the
propensity score and the conditional outcome means are estimated with machine learning
methods compared to conventional methods. The relative improvements range from 36%
to 46%. Overall, I find that all treatment effect estimators have a lower RMSE when the
propensity score and/or the conditional outcome means are estimated with machine learning
methods.

Between-Estimator Comparison

In the between-estimator comparison, I compare the performance of all estimators (conven-
tional and machine learning based). Moreover, I include the Simple OLS estimator regressing
the outcome on the treatment indicator and the ten covariates. As discussed in Section 1.6,
the Simple OLS estimator is generally not a valid estimator for the ATE, but often applied
in practice. For this reason it is valuable to compare the ATE estimators to the Simple OLS
estimator. Note that in all misspecification scenarios the Simple OLS estimator includes only
the treatment indicator and the ten main effects, but no quadratic and interaction terms.
For reasons of space, the results for misspecification scenario I are presented in Appendix
1.A.
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Misspecification Scenario II: Propensity score correctly specified, conditional
outcome misspecified
The results for the misspecification scenario in which the propensity score is correctly spec-
ified, but the conditional outcome means are misspecified are presented in Figure 1.7.

Figure 1.7: Between-Estimator Comparison for Misspecification Scenario II
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Note: The bars indicate the RMSE of the ATE estimator over 5000 simulation replications. The
numbers in brackets to the left of the bars indicate the absolute bias and the standard deviation of
the estimator, i.e. [|Bias|, SD]. The light gray bars represent estimators that use machine learning
methods (random forests and elastic net) to estimate the conditional outcome means. The dark
gray bars represent estimators that use conventional methods (OLS) to estimate the conditional
outcome means. The black bar represents the simple OLS estimator. The results for random forest
(RF) are presented in the left panel, and those for elastic net in the right panel.

With respect to the RMSE, various estimators perform almost equally well. BC Matching
on PS, Matching on PS, Doubly Robust, Regression, and Simple OLS are in the same range
of RMSE. Only the IPW estimators perform somewhat worse.

In terms of absolute bias, the estimators differ considerably. Estimators employing the
correctly specified propensity score have a low bias (0.01 to 0.08). This illustrates that
these methods are able to remove the bias. By contrast, the estimators employing only the
misspecified conditional outcome means (Regression and Simple OLS) have a higher bias
(0.13 to 0.28).

An examination of the standard deviation of the estimators reveals that, Regression (0.16
and 0.17) and Simple OLS (0.17) have the lowest standard deviation. The estimators based
on matching as well as the Doubly Robust estimators have a higher standard deviation,
ranging from 0.22 to 0.26. The IPW estimators exhibit by far the largest variance (SD:
0.41). Overall, this misspecification scenario does not provide evidence that hybrid methods
are superior to estimators that rely only on the propensity score or only on the conditional
outcome means.
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Misspecification Scenario III: Conditional outcome correctly specified, propen-
sity score misspecified
The results for the misspecification scenario in which the conditional outcome means are
correctly specified, but the propensity score is misspecified are presented in Figure 1.8.

Figure 1.8: Between-Estimator Comparison for Misspecification Scenario III
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Note: The bars indicate the RMSE of the ATE estimator over 5000 simulation replications. The
numbers in brackets to the left of the bars indicate the absolute bias and the standard deviation of
the estimator, i.e. [|Bias|, SD]. The light gray bars represent estimators that use machine learning
methods (random forests and elastic net) to estimate the propensity score. The dark gray bars
represent estimators that use conventional methods (logit) to estimate the propensity score. The
black bar represents the simple OLS estimator. The results for random forest (RF) are presented
in the left panel, and those for elastic net in the right panel.

In terms of RMSE, I find that the estimators employing the correctly specified conditional
outcome means perform almost equally well. The RMSE ranges from 0.16 for Regression to
0.21 for the elastic net based BC Matching on PS estimator. The performance of machine
learning based IPW and Matching on PS is slightly worse. The conventional based IPW
estimator again has the highest RMSE.

With regard to the absolute bias, the simulation demonstrates that the estimators using
the correctly specified conditional outcome means are able to remove the bias completely.
Estimators employing only the misspecified propensity score are biased. The bias ranges
from 0.06 for elastic net based IPW and Matching on PS, to 0.35 for conventional based
IPW.

The standard deviations are all rather similar, ranging from 0.16 for Regression to 0.25
for the elastic net based IPW estimator.

Overall, the simulation results for this misspecification scenario again do not provide
evidence that hybrid methods are superior. However, in conjunction with the results from
misspecification scenario II, it can be observed that in both scenarios the hybrid methods are
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among the estimators with the lowest RMSE, or have only a slightly higher RMSE than the
estimator with the lowest RMSE. This slight increase is due to an increase in the variance
of the estimator.

Misspecification Scenario IV: Both propensity score and conditional outcome
model misspecified
The results for the misspecification scenario in which both the propensity score and the
conditional outcome means are misspecified are presented in Figure 1.9.

Figure 1.9: Between-Estimator Comparison for Misspecification Scenario IV
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Note: The bars indicate the RMSE of the ATE estimator over 5000 simulation replications. The
numbers in brackets to the left of the bars indicate the absolute bias and the standard deviation of
the estimator, i.e. [|Bias|, SD]. The light gray bars represent estimators that use machine learning
methods (random forests and elastic net) to estimate the conditional outcome means and the
propensity score. The dark gray bars represent estimators that use conventional methods (OLS
and logit) to estimate the conditional outcome means and the propensity score. The black bar
represents the simple OLS estimator. The results for random forest (RF) are presented in the left
panel, and those for elastic net in the right panel.

With respect to RMSE, the machine learning based Doubly Robust estimators perform
best (both 0.20). The performance of the other machine learning based estimators is very
similar, ranging from 0.21 to 0.26. The conventional based estimators perform worse, es-
pecially the hybrid estimators and IPW. Interestingly, the conventional based estimators
perform even worse than the Simple OLS estimator.

In terms of absolute bias, I find that the machine learning based hybrid estimators and
the elastic net based propensity score methods have the smallest bias, ranging from 0.01 to
0.09. This provides evidence that these methods are able to approximate the true underlying
confounding relationships, even though they are misspecified. The random forest based
propensity score methods, machine learning based Regression, as well as the conventional
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based estimators exhibit a higher bias.
As for misspecification scenario III, the standard deviations of the estimators are all

very similar, with the lowest standard deviation observed for the machine learning based
Regression estimators (0.16).

In general, I again find no evidence that hybrid estimators outperform the estimators
that rely only on the propensity score or only on the conditional outcome means. Although
the machine learning based hybrid methods have lower bias in this scenario, this is partly
offset by an increase in the variance (compared to e.g. Regression).

The between-estimator comparison of misspecification scenario II, III, and IV demon-
strates that hybrid estimators are often among the estimators with the lowest RMSE. If
not, the difference to the estimator with the lowest RMSE is small. This provides evidence
that using the hybrid methods might be advantageous to guard against misspecification,
sometimes at the cost of an increase in the variance.

Analysis of Changes in the Data Generating Process

In this section I analyze the effect of changes in the DGP on the performance of the treatment
effect estimators. I consider changes in the degree of linearity and additivity, as well as
changes in the strength of selection into treatment.

Linearity and Additivity
First, I analyze the effects of changes in the degree of linearity and additivity in the relation-
ships between treatment and covariates and between outcome and covariates. As described
in Section 1.7.1, the default specification for both treatment and outcome includes seven
main effects, three quadratic terms, and ten interaction terms. In the following, the default
specification is abbreviated as NL. Similar to Diamond and Sekhon (2013), I compare speci-
fication NL to a specification where treatment and outcome are linear and additive functions
of the main effects only, without quadratic or interaction terms.29 This specification is ab-
breviated as Linear. Moreover, I include an intermediate specification where treatment and
outcome are functions of the main effects, one quadratic term, and four interaction terms,
abbreviated as Mild NL.30 The results are presented in Figure 1.10.

The analysis provides several insights. First - and not surprisingly - the overall perfor-
mance of the treatment effect estimators does not improve when the underlying relationships
change from linear and additive to nonlinear and nonadditive. Second, the RMSE of the
treatment effect estimators are all rather similar in the Linear specification. Moreover, the
differences in RMSE between machine learning based and conventional based estimators are
small. Third, when the underlying relationships change from linear and additive to nonlinear
and nonadditive, the performance of the estimators depends heavily on misspecification. In

29 Strictly speaking, the relationship between treatment and covariates is never linear, since the logistic
transformation is applied and D is a binary variable. In this context, the linearity and additivity applies to
the underlying function for D∗.

30See Appendix 1.A.1 for details on the specifications.
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Figure 1.10: Analysis of Changes in Linearity and Additivity

(a) MS II: Propensity score correctly specified, conditional outcome misspecified
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(b) MS III: Conditional outcome correctly specified, propensity score misspecified
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(c) MS IV: Both propensity score and conditional outcome model misspecified
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Note: The top/middle/bottom panels represent misspecification scenarios II/III/IV. In each panel,
the columns represent the treatment effect estimators, the rows indicate whether random forest
(RF) or elastic net (Elnet) was used to estimate the propensity score and/or the conditional out-
come means. In each subgraph, the x-axis plots three degree of linearity and additivity. Linear
corresponds to a DGP where both the outcome specification and the treatment specification are
linear and additive, i.e. include only the main effects. To improve readability, the points are slightly
offset horizontally. Mild NL and NL correspond to DGPs where both the outcome specification and
the treatment specification are nonlinear and nonadditive. Mild NL includes the main effects, one
quadratic term and four interaction terms. NL includes the main effects, three quadratic terms,
and ten interaction terms. The shape of the points represents the conventional based estimators
(circle) and the machine learning based estimators (triangle).

35



the top panel (MS II), there is a stark difference between estimators employing the correctly
specified propensity score (IPW, Matching on PS, BC Matching on PS, Doubly Robust), and
the estimator employing only the misspecified conditional outcome means (Regression). The
performance of machine learning based Regression deteriorates less than the performance of
conventional based Regression. For the other estimators there is almost no difference between
machine learning based and conventional based estimation. A similar pattern is observed for
MS III and MS IV. In the middle panel (MS III), the difference emerges between estimators
that employ the correctly specified conditional outcome means (Regression, BC Matching
on PS, Doubly Robust), and those that employ only the misspecified propensity score (IPW,
Matching on PS). In the bottom panel (MS IV), all estimators rely on misspecified propen-
sity scores and/or conditional outcome means. Again, I find that the performance of machine
learning based estimators deteriorates less - as the underlying relationships become nonlinear
and nonadditive - than the performance of conventional based estimators. In summary, this
analysis identifies large differences between machine learning based estimators and conven-
tional based estimators when these estimators employ only misspecified propensity scores
and/or conditional outcome means in a nonlinear and nonadditive setting. This indicates
that machine learning based estimators are better able to approximate the nonlinear and
nonadditive underlying relationships.

Strength Selection Into Treatment
The strength of selection into treatment captures the relative weight of the covariates in
determining whether an observation is treated or not. As it can be seen in equation (1.24),
D∗ is only a function of the covariates. However, the observed treatment indicator is a
Bernoulli draw, and hence a function of both D∗ and a random component. To analyze
changes in the strength of selection into treatment, I follow Frölich (2004) and Huber et al.
(2013), and change the relative weight of the covariates by multiplying D∗ by a parameter
φ. The adjusted propensity score is then given by 1

1+exp(−φD∗) , where φ ∈ {0, 0.2, 0.5, 1, 2}.
In the default specification, φ is set to 1. Decreasing this parameter towards zero decreases
the variance of D∗. After the logistic transformation, the propensity scores are less spread
out, and thus the relative weight of the covariates is smaller. Hence, the effect of the
covariates on the propensity score and thus on the treatment indicator, is less pronounced.
The specification with φ = 0 represents the extreme case of random treatment assignment,
with propensity scores all equal to 0.5. The results are presented in Figure 1.11.

As the strength of selection into treatment increases, the performance of the treatment
effect estimators either decreases monotonically or follows a U-shaped pattern. This can be
explained by different bias and variance patterns of the estimators. Figures 1.19 and 1.20
in Appendix 1.A.2 plot the absolute bias and the standard deviation of the estimators. The
bias remains constant for the estimators employing the correctly specified propensity score
and/or conditional outcome means. However, the bias increases for estimators employing
only the misspecified propensity score and/or conditional outcome means. The strongest bias
increase is observed for conventional based estimators. By contrast, the standard deviation of
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Figure 1.11: Analysis of Changes in the Strength of Selection Into Treatment

(a) MS II: Propensity score correctly specified, conditional outcome misspecified
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(b) MS III: Conditional outcome correctly specified, propensity score misspecified
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(c) MS IV: Both propensity score and conditional outcome model misspecified
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Note: The top/middle/bottom panels represent misspecification scenarios II/III/IV. In each panel,
the columns represent the treatment effect estimators, the rows indicate whether random forest
(RF) or elastic net (Elnet) was used to estimate the propensity score and/or the conditional outcome
means. In each subgraph, the x-axis plots φ, the strength of selection into treatment. The larger
φ, the stronger the selection into treatment. With φ = 0, selection into treatment is random. The
default specification corresponds to φ = 1. The shape of the points represents the conventional
based estimators (circle) and the machine learning based estimators (triangle).
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the estimators decreases as selection into treatment increases, except for the IPW estimator.
Hence, this analysis illustrates that machine learning based estimators perform as well as
conventional based estimators when selection into treatment is weak (or random), or when
the estimators employ the correctly specified propensity score and/or conditional outcome
means. However, when selection into treatment is more pronounced, and the estimators use
a misspecified propensity score and/or conditional outcome means, the machine learning
based estimators outperform the conventional based estimators.

1.8 Empirical Simulation Study: LaLonde Data

The DGP of the second simulation study is based on the LaLonde (1986) dataset and closely
follows the simulation design of Busso et al. (2014). The simulation study in Section 1.7
is characterized by certain unrealistic features, such as that the covariates are drawn from
either a standard normal distribution or a Bernoulli distribution with a probability of 0.5.
Moreover, the covariates are all independent of each other, and the relationship between
treatment and covariates is specified such that approximately half of the sample is treated
and half is control. Such characteristics are often not present in empirical settings. In order
to apply the estimators in a more realistic setting, I conduct an empirical simulation study.

The idea of the empirical simulation study in this section is to base the DGP on charac-
teristics of a real dataset. The procedure is to fit parametric distributions to a real dataset
and subsequently generate a population from the fitted distributions. In the simulation, I
repeatedly draw samples from the population. The real dataset I consider is the Dehejia
and Wahba (1999) subsample of the NSW/PSID1 dataset considered in LaLonde (1986).
The dataset is described in more detail in Section 1.9. Following Busso et al. (2014), I
further restrict the sample to African Americans. In the following I refer to this dataset as
the LaLonde dataset. The objective is to estimate the ATT of a job training program on
earnings.

The LaLonde dataset consists of 780 individuals, 156 of whom were treated and 624 not
treated, with eight covariates. This already marks an important difference in relation to the
simulation in Section 1.7. The number of treated observations is considerably smaller than
the number of control observations in the LaLonde dataset. As is demonstrated later, this
has an effect on the distributions of the propensity scores. Overlap is limited in this dataset,
which makes treatment effect estimation generally more challenging.

1.8.1 Data Generating Process

The population consists of 1 million observations with eight covariates, four of which are
dummy variables and four continuous variables. In the simulation I repeatedly draw samples
of 1000 observations. The population is generated in order to calculate the population ATT,
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i.e. the true causal effect of interest.31 Following Busso et al. (2014), the covariates are
generated as follows:

1. Draw four dummies for married, no degree, unemployed in the year 1974 (u74 ), and
unemployed in the year 1975 (u75 ) from four Bernoulli distributions with probabilities
equal to the sample means of married, no degree, u74, and u75 in the LaLonde data.
Each possible combination of these four dummies represents a group.

2. For each of the 16 groups defined by the four dummies, draw the variables age, edu-
cation, earnings in 1974 (re74, in 1000), and earnings in 1975 (re75, in 1000) from a
group-specific multivariate normal distribution.32 The means and covariance matrix of
the group-specific normal distribution are equal to the sample means and covariances
of age, education, re74, and re75 in the group-specific subset of the LaLonde data. The
variables re74 and re75 are restricted to be in the interval defined by the group-specific
minimum and maximum of re74 and re75 in the LaLonde data. Draws outside the
minimum or maximum are set to the minimum or maximum. The variables age and
education are rounded to integers.

3. To model the relationship between treatment and the covariates, a logit model is fitted
to the LaLonde data. Following Busso et al. (2014), I include the eight main variables
as well as squared re74, squared re75, and interactions between u74 and u74, and
between re74 and re75 in the logit model. I refer to the coefficients of the fitted logit
model as β̂L. Then, the population relationship between treatment and the covariates
is based on

D∗ = Z ′β̂L − u , (1.27)

where Z is the set of variables consisting of the main effects as well as the quadratic
and interaction terms, and u is a noise term from a logistic distribution with location
0 and scale 1.

4. The observed treatment indicator D is constructed as:

D = 1{D∗ > 0} ,

where 1{·} is the indicator function.

5. To model the relationship between the outcome and the covariates, two separate OLS
regressions are fitted to the LaLonde data. The set of variables included in the OLS
regressions are the same as for the logit model in step 3. The first OLS regression is
fitted in the subsample of treated observations, and the coefficients are referred to as

31Unlike in the simulation of Section 1.7, the treatment effect of this simulation is allowed to be hetero-
geneous.

32The group-specific multivariate distribution ensures that the variables are dependent, e.g. unemploy-
ment status and education are correlated.
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γ̂L1 . The second OLS regression is fitted in the subsample of untreated observations,
and the coefficients are referred to as γ̂L0 .

6. Calculate the potential outcomes Y 1 and Y 0 as

Y 1 = Z ′γ̂L1 + ε1 , and (1.28)
Y 0 = Z ′γ̂L0 + ε0 , (1.29)

where Z is again the set of variables consisting of the main effects as well as the
quadratic and interaction terms, and ε1 and ε0 are noise terms from two normal distri-
butions with mean 0 and variances σ2

ε1 and σ2
ε0 . The variances σ2

ε1 and σ2
ε0 correspond to

the means of the squared residuals from the two OLS regressions fitted to the LaLonde
data.

7. Finally, the observed outcome Y is given by

Y = DY 1 + (1−D)Y 0 . (1.30)

Compared to the simulation in Section 1.7, this DGP does not impose a constant treatment
effect. Since two OLS regressions are fitted in the treated and untreated subsample, this
DGP allows for heterogeneity in treatment effects.

1.8.2 Results

Within-Estimator Comparison

As described at the beginning of Section 1.8, the LaLonde dataset consists of substantially
more control observations than treated observations. Since the simulated datasets are based
on functions fitted in the LaLonde dataset, this characteristic is also present in the simulated
datasets. As Figure 1.12 illustrates, the estimated propensity score distributions have limited
overlap. The mass of the distribution of the control group propensity scores is close to zero.
As a result, there are few observations in the control group with an estimated propensity
score greater than 0.1.33 This indicates that overlap is limited in this setting.

33Each bin in the histogram contains a propensity score range of 0.05. Hence, the two leftmost bins
indicate the frequency of observation with propensity scores 0 to 0.1.
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Figure 1.12: Distribution of Estimated Propensity Scores
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Note: The graph indicates the median (over 5000 simulation replications) histogram of estimated
propensity scores by logistic regression (Logit), random forests (RF), and elastic net (Elnet). The
darker gray bars (line) represent the distribution of the estimated (true) propensity scores of control
observations, while the lighter gray bars (line) represent the distribution of the estimated (true)
propensity scores of treated observations.

Analogous to Section 1.7, for each treatment effect estimator I first compare conventional
based estimation (OLS and logit) to machine learning based estimation (random forest and
elastic net). The results are presented in Figure 1.13.

Figure 1.13: Within-Estimator Comparison Empirical Simulation Study
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Note: Simulation based on 5000 replications. The bars indicate the relative change in RMSE of
machine learning based estimation of the ATT (random forest in the left panel, elastic net in the
right panel), compared to conventional based estimation of the ATT (OLS/Logit). A negative
value indicates that the RMSE of the machine learning based estimator was lower, i.e. that the
treatment effect was estimated more accurately with machine learning methods.

The estimators based on weighting (IPW and Doubly Robust) estimate the ATT much
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more accurately when the propensity score - and in case of the Doubly Robust estimator
also the conditional outcome means - is estimated with machine learning methods. The
largest improvements are observed for IPW (38% RMSE improvement with random forest,
31% RMSE improvement with elastic net). The RMSE of the Doubly Robust estimator
decreases by 30% (RF) and 24% (Elnet). For the estimators based on matching (Matching
on PS and BC Matching on PS), the RMSE improvements are much smaller. The RMSE of
the Matching on PS estimator decreases by 3% (RF) and 8% (Elnet), the RMSE of the BC
Matching on PS estimator by 5% (Elnet), while no RMSE change is observed for the random
forest based version. The Regression estimator performs worse when the conditional outcome
is estimated with machine learning methods. The increase in RMSE is substantial in the
case of random forest (25%), and minor in the case of elastic net (1%). In summary, the
within-estimator comparison for this dataset provides evidence that, with the exception of
the Regression estimators, machine learning based estimators of the ATT are more accurate
than conventional based estimators.

Between-Estimator Comparison

As in the first simulation, the between-estimator comparison indicates the performance of
all treatment effect estimators (conventional and machine learning based). Again, I include
the Simple OLS estimator regressing the outcome on the treatment indicator and the eight
covariates as a benchmark. The results are presented in Figure 1.14.
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Figure 1.14: Between-Estimator Comparison Empirical Simulation Study
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Note: The bars indicate the RMSE of the ATT estimator over 5000 simulation replications. The
numbers in brackets to the left of the bars indicate the absolute bias and the standard deviation of
the estimator, i.e. [|Bias|, SD]. The light gray bars represent estimators that use machine learning
methods (random forests and elastic net) to estimate the conditional outcome means and the
propensity score. The dark gray bars represent estimators that use conventional methods (OLS
and logit) to estimate the conditional outcome means and the propensity score. The black bar
represents the simple OLS estimator. The results for random forest (RF) are presented in the left
panel, and those for elastic net in the right panel.

In terms of RMSE, OLS based Regression (RMSE: 1.74) and elastic net based Regression
(RMSE: 1.76) estimate the ATT most accurately. Thereafter, the performance of a large
set of estimators is very similar. The RMSE of random forest based Regression, machine
learning based IPW and Doubly Robust, and both versions of the Matching on PS and BC
Matching on PS estimators range between 2.08 and 2.36. The conventional based versions of
IPW (RMSE: 3.42) and Doubly Robust (RMSE: 2.98) perform worse. The ATT is estimated
least accurately by Simple OLS (RMSE: 3.59).

Considering the bias of the treatment effect estimators, the machine learning based hy-
brid estimators Doubly Robust and BC Matching on PS exhibit the smallest absolute bias.
Both the conventional and the machine learning based Regression estimators have substan-
tially higher bias than the hybrid estimators. Matching on PS achieves relatively low bias,
especially the elastic net based version. The Simple OLS estimator exhibits by far the largest
bias (3.42).

In terms of standard deviation of the estimators, the Simple OLS estimator (1.10) and
the Regression estimators have the smallest standard deviation. By contrast, the matching
based estimators and Doubly Robust demonstrate relatively high variance. The conventional
based IPW estimator has the highest variance.

Overall, I find that the good RMSE performance of OLS based Regression is due primarily
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to its relatively low variance. The hybrid estimators exhibit low bias, but have relatively
high variance. As a result, I do not find evidence that hybrid estimators are able to estimate
the ATT more accurately in terms of RMSE.

1.9 Within-Study Comparison: LaLonde Data

1.9.1 Within-Study Comparisons

In an influential contribution, LaLonde (1986) introduced the concept of within-study com-
parisons, which consist of two steps. In the first step, an experimental dataset is used to
estimate the causal effect of treatment. Since treatment is randomly assigned in the ex-
periment, there are no confounders. Therefore, an unbiased estimate of the causal effect
is given by the difference in the mean outcomes of the treatment and control group. In a
second step, either the experimental control group or the experimental treatment group is
replaced by a nonexperimental comparison group. This should mimic a situation in which no
experiment is available and confounding is a problem. The idea is then to analyze whether
non-experimental econometric estimators are able to recover the ”true” causal effect from
the experiment with the non-experimental data. LaLonde (1986) finds that results are sen-
sitive to both econometric specification and subgroup used in analysis. In many cases, his
non-experimental econometric estimators were not able to recover the ”true” causal effect.

1.9.2 Data

The analysis of LaLonde (1986) was based on the National Supported Work (NSW) Demon-
stration - a US job training program for disadvantaged workers. The goal of the program
was to give participants work experience and assistance in a protected environment. For
an in-depth description, see e.g. LaLonde (1986), Smith and Todd (2005), and Calónico
and Smith (2017). The four target groups were 1) women receiving Aid to Families with
Dependent Children (AFDC), 2) former drug addicts, 3) former offenders, and 4) high school
dropouts. The main criteria for eligibility were that the person was unemployed at the time
of being selected for the job training and had not been employed for more than three months
in the preceding six months.34 The eligible applicants were randomly assigned to either the
treatment group (receiving job training) or the control group (receiving no job training). For
both treatment and control group, data on earnings and other demographic variables was
collected before and after the treatment.35 The outcome of interest was earnings in the post-
training year, which was 1978 for men and 1979 for women. The observed covariates were
age, education, pre-treatment earnings in 1974 and 1975, a categorical variable for ethnicity,

34Further criteria for the group receiving AFDC were that they had been receiving AFDC for at least 30
out of the 36 preceding months and that they had no child younger than 6 years old.

35Sample attrition was a problem and possibly led to biased estimates of the program impact, see LaLonde
(1986).
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and dummies for being married and high school dropouts.36 The job training program was
voluntary, and only a small fraction of eligible people participated in the program.

LaLonde (1986) created nonexperimental comparison groups from Westat’s Matched Cur-
rent Population Survey - Social Security Administration File (CPS-SSA) and the Panel Study
of Income Dynamics (PSID). The CPS-SSA and PSID are stratified random samples of the
US population.37 There are several problems with both the experimental and the non-
experimental datasets of LaLonde (1986). First, the experimental dataset is rather small,
both in terms of the number of observations and the number of covariates. The experimen-
tal dataset of male participants consists of 297 treated and 425 control observations, with
eight covariates.38 The limited number of observations affects the precision of the estimated
causal effect. In the experimental dataset, LaLonde (1986) estimates a causal effect of $886.
However, the standard error is $476 and thus relatively large. Another issue is that the
individuals in the non-experimental comparison groups were often from a different local la-
bor market (geographic mismatch), and earnings were measured in a different way to the
experimental dataset (Smith & Todd, 2005).

1.9.3 Implementation

In this section I conduct a within-study comparison. I follow the implementation applied
in Heckman et al. (1997), Heckman, Ichimura, Smith, and Todd (1998), and Smith and
Todd (2005). These authors note that another way to evaluate whether non-experimental
estimators are able to remove the selection bias is to compare the experimental control group
with the non-experimental comparison groups. Therefore, the treatment indicator indicates
whether the individual belongs to the experimental control group or the non-experimental
comparison group. As both groups did not receive job training, the true causal effect is
known to be zero. Thus, I first create a combined dataset consisting of the experimental
control group and the PSID comparison group.39 I then follow Advani et al. (2019) and
apply a resampling procedure. I draw 5000 bootstrap samples from the original dataset. For
each sample I draw 260 treated and 2490 control observations with replacement.

This dataset raises two fundamental problems related to the identifying assumptions.
First, overlap of treated and control observations is very limited. This is illustrated in
Figure 1.15. The vast majority of control group observations have an estimated propensity

36Earnings in 1974 are only available for the Dehejia and Wahba (1999) subgroup. This subgroup is used
in the analysis.

37Individuals older than 55 were excluded. In addition, individuals with a nominal own income of more
than $20’000 (family income more than $30’000) were excluded from the CPS, and individuals reporting as
being retired in 1975 were excluded from the PSID.

38The literature following LaLonde (1986) focused primarily on the subsample of male participants. One
reason for this is that LaLonde (1986) concludes that ”[...] econometric procedures are more likely to replicate
the experimental results in the case of female rather than male participants.” In other words, LaLonde (1986)
finds that the selection problem is more pronounced for male participants. Recently, Calónico and Smith
(2017) reanalyzed the female subsample.

39As in section 1.8, I consider the Dehejia and Wahba (1999) subsample of the NSW/PSID1 dataset
considered in LaLonde (1986).
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score smaller than 0.05. Only a few control group observations have an estimated propensity
score above 0.75, where the mass of the distribution of treated observations is. Second, unlike
in the two simulation studies, we do not know whether the unconfoundedness assumption
holds. In fact, given the limited number of covariates and pre-treatment information, it is
rather unlikely that unconfoundedness holds. For example, it might be required to include
a more detailed employment history. As these two problems challenge the core assumptions
of the treatment effect estimators, the results should be interpreted with caution.

Figure 1.15: Distribution of Estimated Propensity Scores
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Note: The graph indicates the median (over 5000 simulation replications) histogram of estimated
propensity scores by logistic regression (Logit), random forests (RF), and elastic net. The lines
represent the distribution of the true propensity score. The darker gray represents the distribution
of the estimated propensity scores of control observations, while the lighter gray represents the
distribution of treated observations.

1.9.4 Results

Similar to the two simulation studies, I conduct a within-estimator comparison as well as
a between-estimator comparison. The results for the within-estimator comparison are pre-
sented in Figure 1.16.
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Figure 1.16: Within-Estimator Comparison LaLonde Data
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Note: Results based on 5000 bootstrap replications. The bars indicate the relative change in RMSE
of machine learning based estimation of the ATT (random forest in the left panel, elastic net in
the right panel), compared to conventional based estimation of the ATT (OLS/logit). A negative
value indicates that the RMSE of the machine learning based estimator was lower, i.e. that the
treatment effect was estimated more accurately with machine learning methods.

The results are mixed. For the Doubly Robust estimator, I find substantial improvements
in RMSE when the propensity score and the conditional outcome means are estimated with
random forests (74% improvement) or with elastic net (24% improvement). By contrast, I
find that machine learning based IPW and Matching on PS perform considerably worse than
their conventional counterpart. The elastic net based IPW and Matching on PS estimators,
in particular, perform poorly (a 101 % and 97% deterioration, respectively). BC Matching
on PS performs better (15% improvement) when the propensity score and the conditional
outcome means are estimated with random forests, but worse (45% deterioration) with elastic
net.

The results for the between-estimator comparison are presented in Figure 1.17.
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Figure 1.17: Between-Estimator Comparison LaLonde Data
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Note: The bars indicate the RMSE of the ATT estimator over 5000 bootstrap replications. The
numbers in brackets to the left of the bars indicate the absolute bias and the standard deviation of
the estimator, i.e. [|Bias|, SD]. The light gray bars represent estimators that use machine learning
methods (random forests and elastic net) to estimate the conditional outcome means and the
propensity score. The dark gray bars represent estimators that use conventional methods (OLS
and logit) to estimate the conditional outcome means and the propensity score. The black bar
represents the simple OLS estimator. The results for random forest (RF) are presented in the left
panel, and those for elastic net in the right panel.

In terms of RMSE, random forest based Doubly Robust estimates the ATT most accu-
rately (RMSE: 1144). This is in stark contrast to the conventional based Doubly Robust
estimator, whose RMSE is almost four times larger (RMSE: 4371). Furthermore, the elastic
net based estimators employing the propensity score (Doubly Robust, BC Matching on PS,
Matching on PS, IPW ) perform poorly.

With respect to the bias of the treatment effect estimators, the random forest based
Doubly Robust estimator exhibits the lowest bias (94). The bias of the conventional based
Matching on PS estimator is also reasonably low (141). The conventional based Doubly
Robust estimator has the largest bias (3721).

In terms of standard deviation of the estimators, the random forest based IPW estimator
(815), the random forest based Regression estimator (819), and the Simple OLS estimator
(826) have the smallest standard deviation. By contrast, the elastic net based estimators
employing the propensity score have the highest variance.

Overall, in line with the two simulation studies, I do not find evidence that hybrid
estimators outperform the estimators that rely only on the propensity score or only on the
conditional outcome means. Although the best performance is achieved by the random forest
based Doubly Robust estimator, the performance of the elastic net based hybrid estimators
is worrisome.
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1.10 Supplementary Analysis

In this section I analyze the effect of two estimation choices a researcher has to make when
applying the treatment effect estimators discussed in this chapter, especially when using the
machine learning based estimators. I analyze the effects of cross-fitting and repeated sample
splitting.

1.10.1 Cross-Fitting

Cross-fitting is described in Section 1.5.3. In the default specification, the number of cross-
fitting folds is equal to five. I analyze the effect of changing the number of cross-fitting folds
on the performance of the estimators. Figure 1.21 in Appendix 1.A presents the results for
the simulation of Section 1.7.

I find that the RMSE differences between two-fold, five-fold, and ten-fold cross-fitting
are small. Often, the performance is worst with only two cross-fitting folds. This is most
pronounced for the IPW estimator. The benefits of increasing the number of cross-fitting
folds from five to ten are modest. Since the associated increase in computational cost is
sizable, this simulation provides evidence that five cross-fitting folds are sufficient.

1.10.2 Repeated Sample Splitting

As described in 1.5.3, cross-fitting randomly splits the sample into different folds. Since this
split is random, the results in a finite sample depend on the split. The goal of repeated
sample splitting is to decrease the dependency on a single random split. In small samples,
this spit can be unrepresentative of the whole sample and thus influence the results. In the
default specification, I do not consider repeated sample splitting for computational reasons.
Figure 1.22 in Appendix 1.A presents the results for the default specification, as well as for
10 and 25 repeated sample splits. That is, in each of the 5000 simulation replications, I take
the median over 10 and 25 estimated treatment effects, respectively.40

Even with only 10 repeated sample splits, there are certain RMSE improvements of
repeated sample splitting. The largest RMSE improvements are observable for BC Matching
on PS and Matching on PS, especially their machine learning based versions. I find no
changes for the Regression estimator and only minor improvements for the Doubly Robust
estimator. The difference between 10 and 25 repeated sample splits is small.

1.11 Conclusion

This chapter has analyzed the performance of treatment effect estimators assuming uncon-
foundedness. I examined the regression estimator, matching on the propensity score, inverse

40For computational reasons, I only examine 10 and 25 repeated sample splits. In an empirical example,
Chernozhukov et al. (2018) use 100 repeated sample splits.
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probability weighting, bias-corrected matching on the propensity score, and the doubly ro-
bust estimator.

To answer the first research question, I analyzed whether estimating the propensity score
and/or the conditional outcome means with machine learning methods increases the accuracy
of treatment effect estimation compared to estimating these functions with OLS and/or
logit. The two simulation studies provide evidence that in many cases the machine learning
based estimators are more accurate than the estimators relying on OLS and/or logit. The
differences are most pronounced when both the propensity score and the conditional outcome
means are misspecified. The results from the within-study comparison are mixed, and should
be interpreted with caution since the identifying assumptions are potentially violated.

To answer the second research question, I analyzed whether hybrid methods estimate the
treatment effects more accurately than estimators that rely either only on the propensity
score or only on the conditional outcome means. I do not find evidence that hybrid estimators
generally outperform the other estimators. However, hybrid estimators are often among the
estimators with the lowest RMSE. In many cases, hybrid estimators exhibit the lowest bias,
sometimes at the cost of an increased variance. This could be interpreted as the cost of
allowing misspecification in either the propensity score or the conditional outcome means.
It might therefore be advantageous to use hybrid methods to guard against misspecification,
especially if one is more concerned about bias than variance.

To answer the third research question, I analyzed how the accuracy of the estimators
depends on changes in a) the degree of linearity and additivity in the relationships between
treatment and covariates and between outcome and covariates, and b) the strength of se-
lection into treatment. I find that in cases where the underlying relationships are linear
and additive, or when selection into treatment is weak, the accuracy of the treatment ef-
fect estimators is similar. Moreover, the differences between machine learning based and
conventional based estimators are small. However, when the underlying relationships be-
come nonlinear and nonadditive, or when selection into treatment is more pronounced, and
the estimators use a misspecified propensity score and/or conditional outcome means, the
machine learning based estimators outperform the conventional based estimators.

In a supplementary analysis, I find that the RMSE differences between two-fold, five-fold,
and ten-fold cross-fitting are small. Often, the performance is worst with only two cross-
fitting folds. In addition, I find that repeated sample splitting improves treatment effect
estimation in some cases.

This chapter has several limitations. As discussed in Section 1.2, there are numerous ways
to conduct a simulation study. Every decision a researcher takes when designing a simulation
study could potentially have an effect on the findings. In the simulation in Section 1.7, for
example, the decision that the default specification includes nonlinearities undoubtedly has
an effect on the results. Moreover, the way the nonlinearities are introduced potentially
affects the results. Even though the simulation in Section 1.8 tries to imitate a real dataset,
it is not clear whether the findings can be generalized to a real empirical application. Whether
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it is beneficial to use machine learning methods to control for covariates will depend on the
unknown underlying relationships. If the underlying relationships are linear and additive,
linear and additive models will most likely work well, and flexible machine learning methods
will be of limited use. Furthermore, the scope of the study is limited. I only apply five
treatment effect estimators. Several other interesting estimators have been proposed - for
example approximate residual balancing (Athey, Imbens, & Wager, 2018). Moreover, I
implemented rather basic versions of these five estimators. Various alternatives for these
estimators were suggested, for example normalizing the IPW weights so that they add
up to one, using more than one nearest neighbor in Matching on PS, or Matching on PS
without replacement. Further, I only consider the machine learning methods random forests
and elastic net. It would be very interesting to analyze the accuracy of treatment effect
estimators using other machine learning methods, such as boosting or neural networks. It
could also be interesting to use ensemble methods that combine different machine learning
methods.

It is important to stress that the treatment effect estimators discussed in this chapter
rely on the unconfoundedness assumption. If unconfoundedness does not hold, neither ma-
chine learning based estimators nor hybrid estimators will solve this problem. Given that
the unconfoundedness assumption is credible, it might be recommendable to estimate the
treatment effect with more than one estimator, and compare the estimated treatment effects.
This analysis suggests the use of the hybrid estimators Doubly Robust and BC Matching on
PS, especially if one is more concerned about bias than variance. The simulation results fur-
ther indicate that the Simple OLS estimator - i.e. regressing the outcome on the treatment
indicator and the covariates - often performs poorly. It is therefore not recommended to rely
only on the Simple OLS estimator.
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Appendix 1.A Appendix to Stylized Simulation Study

1.A.1 Data Generating Process

The analysis of different degrees of linearity and additivity in Section 1.7.3 is based on the
following specifications.

D∗L =β0 + β1X1 + β2X2 + β3X3 + β4X4 + β5X5 + β6X6 + β7X7

D∗mNL =D∗L + β2X
2
2 + 0.5β1X1X3 + 0.7β2X2X4 + 0.5β4X4X5 + 0.5β5X5X6

D∗NL =D∗L + β2X
2
2 + β4X

2
4 + β7X

2
7 +

0.5β1X1X3 + 0.7β2X2X4 + 0.5β3X3X5 + 0.7β4X4X6 + 0.5β5X5X7+
0.5β1X1X6 + 0.7β2X2X3 + 0.5β3X3X4 + 0.5β4X4X5 + 0.5β5X5X6 ,

where D∗L is the linear and additive specification, D∗mNL the mild nonlinear and nonadditive
specification, and D∗NL is the nonlinear and nonadditive specification. The three specifi-
cations correspond to the scenarios A, E, and G in Diamond and Sekhon (2013). The β
coefficients are the same as in Section 1.7.3. The same applies to the outcome specifications:

Y ∗L =τD + α0 + α1X1 + α2X2 + α3X3 + α4X4 + α8X8 + α9X9 + α10X10

Y ∗mNL =Y ∗L + α2X
2
2 + 0.5α1X1X3 + 0.7α2X2X4 + 0.5α4X4X9 + 0.5α8X8X10

Y ∗NL =Y ∗L + α2X
2
2 + α4X

2
4 + α10X

2
10+

0.5α1X1X3 + 0.7α2X2X4 + 0.5α3X3X4 + 0.7α4X4X8 + 0.5α8X8X10+
0.5α1X1X10 + 0.7α2X2X3 + 0.5α3X3X9 + 0.5α4X4X10 + 0.5α9X9X10 ,

where Y ∗ denotes the outcome without the effect of treatment and without the error term.
In order to determine σ2

ε , I first calculate the McFadden pseudo R2 of the treatment
specification as R2

pseudo = 1− log(Lfull)
log(Lnull)

, where Lfull is the Likelihood of the logistic regression
model, including all variables used in the propensity score specification, and Lnull is the
likelihood of the null model (logistic regression) including only an intercept. I then calculate
the variance of the outcome without noise term, denoted by V ar(Y ∗). Then,

R2 = V ar(Y ∗)
V ar(Y )

R2 = V ar(Y ∗)
V ar(Y ∗) + σ2

ε

σ2
ε = 1−R2

R2 V (Y ∗)

Substituting R2 for R2
pseudo yields σ2

ε = 1−R2
pseudo

R2
pseudo

V (Y ∗). In 1000 simulations of D and Y

(independent from the simulations in Section 1.7.3), the mean of the R2
pseudo was 0.263 (SD:

0.022), the mean of σ2
ε was 4.628 (SD: 0.605), and the mean of the R2 was 0.274 (SD: 0.032).
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1.A.2 Additional Results

Figure 1.18: Between-Estimator Comparison for Misspecification Scenario I
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Note: The bars indicate the RMSE of the ATE estimator over 5000 simulation replications. The
dark gray bars represent estimators that use conventional methods to estimate the conditional
outcome means (OLS) and the propensity score (logit). The black bar represents the OLS estimator
regressing the outcome on the treatment indicator and the ten covariates.
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Figure 1.19: Analysis of Changes in the Strength of Selection Into Treatment: Bias

(a) MS II: Propensity score correctly specified, conditional outcome misspecified
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(b) MS III: Conditional outcome correctly specified, propensity score misspecified
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(c) MS IV: Both propensity score and conditional outcome model misspecified
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Note: The top/middle/bottom panels represent misspecification scenarios II/III/IV. In each panel,
the columns represent the treatment effect estimators, the rows indicate whether random forest
(RF) or elastic net (Elnet) was used to estimate the propensity score and/or the conditional outcome
means. In each subgraph, the x-axis plots φ, the strength of selection into treatment. The larger φ,
the stronger is the selection into treatment. With φ = 0, selection into treatment is random. The
default specification corresponds to φ = 1. The shape of the points represents the conventional
based estimators (circle) and the machine learning based estimators (triangle).
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Figure 1.20: Analysis of Changes in the Strength of Selection Into Treatment: SD

(a) MS II: Propensity score correctly specified, conditional outcome misspecified
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(b) MS III: Conditional outcome correctly specified, propensity score misspecified
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(c) MS IV: Both propensity score and conditional outcome model misspecified
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Note: The top/middle/bottom panels represent misspecification scenarios II/III/IV. In each panel,
the columns represent the treatment effect estimators, the rows indicate whether random forest
(RF) or elastic net (Elnet) was used to estimate the propensity score and/or the conditional outcome
means. In each subgraph, the x-axis plots φ, the strength of selection into treatment. The larger φ,
the stronger is the selection into treatment. With φ = 0, selection into treatment is random. The
default specification corresponds to φ = 1. The shape of the points represents the conventional
based estimators (circle) and the machine learning based estimators (triangle).
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Figure 1.21: Analysis of Cross-Fitting

(a) MS II: Propensity score correctly specified, conditional outcome misspecified
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(b) MS III: Conditional outcome correctly specified, propensity score misspecified

Regression IPW Matching on PS BC Matching on PS Doubly Robust

R
F

E
ln

e
t

2 5 10 2 5 10 2 5 10 2 5 10 2 5 10

0.2

0.3

0.4

0.2

0.3

0.4

Number of Cross−Fitting Folds

R
M

S
E

(c) MS IV: Both propensity score and conditional outcome model misspecified
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Note: The top/middle/bottom panels represent misspecification scenarios II/III/IV. In each panel,
the columns represent the treatment effect estimators, the rows indicate whether random forest
(RF) or elastic net (Elnet) was used to estimate the propensity score and/or the conditional outcome
means. In each subgraph, the x-axis plots the number of cross-fit folds. The shape of the points
represents the conventional based estimators (circle) and the machine learning based estimators
(triangle).
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Figure 1.22: Analysis of Repeated Sample Splitting

(a) MS II: Propensity score correctly specified, conditional outcome misspecified
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(b) MS III: Conditional outcome correctly specified, propensity score misspecified
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(c) MS IV: Both propensity score and conditional outcome model misspecified
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Note: The top/middle/bottom panels represent misspecification scenarios II/III/IV. In each panel,
the columns represent the treatment effect estimators, the rows indicate whether random forest
(RF) or elastic net (Elnet) was used to estimate the propensity score and/or the conditional outcome
means. In each subgraph, the x-axis plots the number of repeated sample splits. If the number
of repeated sample splits is equal to 1, no repeated sample splitting was applied. The shape of
the points represents the conventional based estimators (circle) and the machine learning based
estimators (triangle).
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Chapter 2

Identification and Estimation of
Causal Intensive Margin Effects by
Difference-in-Difference Methods1

2.1 Introduction

A decomposition of a binary treatment into extensive and intensive margin effects is of special
interest when studying outcomes with a corner solution at zero.2 Outcomes with corner
solutions include working hours, health expenditures, and trade volumes. The average effect
of a treatment on an outcome with a corner solution at zero can be decomposed into 1) the
average change in the outcome of those with a positive outcome irrespective of treatment,
plus 2) the average outcome of those with a positive outcome in case of treatment and a zero
outcome in case of no treatment, minus 3) the average outcome of those with a zero outcome
in case of treatment and a positive outcome in case of no treatment (Lee, 2012, 2017; Staub,
2014). Part 1) represents the weighted causal intensive margin effect. The sum of 2) and 3)
captures the weighted causal extensive margin effect.3

Take as an example the effect of the introduction of a partial retirement policy on labor
supply. Suppose that in the status quo, individuals must withdraw the full pension at a given
age, but are allowed to continue working. Under the partial retirement policy, individuals
have the choice between a partial and a full pension, and are allowed to continue working.
The total effect of such a policy on labor supply might be zero, suggesting that the policy
has been ineffective. The zero result, however, could be explained by a positive extensive
margin effect that was offset by a negative intensive margin effect. Older workers who

1This chapter is joint work with Markus Hersche. An earlier version was published as working paper
“Identification of Causal Intensive Margin Effects by Difference-in-Difference Methods”, CER-ETH Eco-
nomics Working Paper Series, 11/2018, see Hersche and Moor (2018). This chapter is also part of the
doctoral thesis ”Theoretical and Empirical Essays on Labor Supply of the Elderly”, Diss. ETH No. 25377,
see Hersche (2018).

2Corner solutions at alternative thresholds are possible as well. For simplicity and illustration, we
consider the case where the threshold is at zero.

3The weights are given by the relative size of the group in the population.
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would have retired in the absence of a partial retirement policy, now decide to stay in the
labor market. Likewise, individuals who would have worked full-time in the absence of a
partial retirement policy, now decide to work part-time. In such cases the total effect masks
interesting subeffects at the extensive and intensive margin.

Even if treatment is randomly assigned, estimating intensive margin effects is challenging.
A mean comparison of treatment and control groups with positive outcomes does not identify
the causal intensive margin effect without additional assumptions (Angrist, 2001). In the
labor supply example, the sample of individuals with positive working hours consists of
two groups: 1) the group of individuals with positive working hours irrespective of whether
they are treated or not, i.e. irrespective of whether they have the possibility to withdraw
a partial pension; and 2) the group of individuals with positive working hours only because
they are treated, i.e. only because they have the possibility to withdraw a partial pension,
who would not work if they could only withdraw the full pension.4 For the causal intensive
margin effect, we are only interested in the first group. Group membership is however not
observed in the data, because we observe either the outcome in case of treatment or the
outcome in case of no treatment. The unobserved characteristics of the two groups are likely
to be different. Individuals in the first group might be more motivated than individuals
in the second group. Therefore, average working hours in the first group are likely higher
than in the second group. As a result, a difference in the means of treated and untreated -
conditional on positive working hours - could be the result of differences in these unobserved
characteristics, and not because of a causal effect of treatment.

This constitutes a selection problem. In a general setting without random treatment,
we are thus faced with two selection problems. The first selection problem is the standard
selection problem in observational studies. In the presence of confounding variables, a mean
comparison of treated and untreated individuals does not identify the causal effect. The
second selection problem arises because we condition on positive outcomes. Difference-in-
difference methods were developed to deal with the first selection problem. Using data
from pre- and post-treatment periods, difference-in-difference allows for some selection on
unobservables. This comes at the cost of making an assumption about outcome trends over
time. It seems reasonable to extend the difference-in-difference methodology to include the
second selection problem as well.

In this chapter, we discuss difference-in-difference methods to estimate the causal inten-
sive margin effect. In contrast to standard difference-in-difference estimators, we condition
the sample on individuals with positive outcomes.5 We derive sufficient conditions under
which the causal intensive margin effect is identified. Compared to standard difference-in-
difference methods, two monotonicity assumptions are additionally required to identify the

4Here we neglect a possible third group, the group of individuals with positive working hours only because
they are not treated, i.e. only because they do not have the possibility to withdraw a partial pension, and
who would not work if they had the choice between a partial and a full pension. In this example this case
seems rather unlikely.

5We refer to the term standard difference-in-difference to denote difference-in-difference methods that
do not condition on positive outcomes.
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causal intensive margin effect. We apply the difference-in-difference methodology to esti-
mate the causal intensive margin effect of reaching the full retirement age on working hours.
Moreover, we discuss how the identifying assumptions can be motivated in practice.

The main contribution of this chapter is to extend the literature on identification and
estimation of intensive margin effects by borrowing well established difference-in-difference
methods from the policy evaluation literature. The intensive margin effect is of interest in
cases where the total effect masks relevant subeffects, e.g. when the extensive and intensive
margin effect have different signs. The difference-in-difference estimator on positive outcomes
represents an alternative to estimating the intensive margin effect with models for outcomes
with corner solutions or selection models.

This chapter is thus related to the literature on models for outcomes with corner solu-
tions, e.g. Tobit (McDonald & Moffitt, 1980; Tobin, 1958) or two-part models (Cragg, 1971;
Duan, Manning, Morris, & Newhouse, 1983), and selection models (Heckman, 1979). More-
over, this chapter is connected to the literature employing principal stratification (Frangakis
& Rubin, 2002) to study causal extensive and intensive margin treatment effects for variables
with nonnegative outcomes (Lee, 2012, 2017; Staub, 2014). This literature decomposes the
average treatment effect into a population-weighted sum of treatment effects of participants
and switchers.6 Studying outcomes with a corner solution at zero, Staub (2014) derives
nonparametric bounds for the treatment effects of participants and switchers. He further
discusses point identification of causal intensive and extensive margin effects in censored
regression, selection, and two-part models. Lee (2012, 2017) analyzes total, extensive, and
intensive margin effects in general sample selection models, with the corner solution out-
come as a special case. Lee (2012) analyzes nonparametric methods to estimate extensive
and intensive margin effects, whereas Lee (2017) discusses point identification of intensive
and extensive margin effects in semiparametric linear models. The idea of principal strati-
fication is also used in instrumental variable approaches (Angrist, Imbens, & Rubin, 1996),
and in mediation analysis (Deuchert, Huber, & Schelker, 2019). In instrumental variable
approaches, the stratification is based on the treatment variable (always-takers, compliers,
defiers, never-takers), whereas in mediation analysis, the stratification in based on the medi-
ator. In our context, the stratification is based on the outcome variable. More generally, this
chapter often draws upon Lechner (2010), who provides a survey on difference-in-difference
methods from a potential outcomes perspective.

The remainder of this chapter is organized as follows. Section 2.2 introduces the notation
and describes the conventional as well as the causal decomposition of a treatment effect.
Identification of the causal intensive margin effect is described in Section 2.3. Section 2.4
discusses estimation and inference. An empirical application is presented in Section 2.5. The
last section concludes.

6Participants represent individuals with a positive outcome irrespective of treatment. Switchers represent
individuals with a positive outcome in case of treatment and a zero outcome in case of no treatment, as well
as individuals with a zero outcome in case of treatment and a positive outcome in case of no treatment.
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2.2 Notation and Decomposition of a Treatment Effect

2.2.1 Notation

We consider the standard potential outcome framework with a non-negative outcome Y and
a binary treatment D (Rubin, 1974), extended to two periods (Lechner, 2010). We observe
individuals in the pre-treatment period t− 1, and in the post-treatment period t; that is we
observe Yi,t−1 and Yi,t. In each period, each individual i has two potential outcomes. The
potential outcomes in case of treatment (Di = 1) are denoted by Y 1

i,t and Y 1
i,t−1, and in case

of no treatment (Di = 0) by Y 0
i,t and Y 0

i,t−1.7 In each period, we only observe one of the
two potential outcomes. Moreover, each individual is characterized by a vector of observed
covariates Xi, assumed to be constant over time. The starting point of the decompositions
described in Sections 2.2.2 and 2.2.3 is the average treatment effect on the treated (ATT),
defined as

ATTt = E(Y 1
i,t − Y 0

i,t|Di = 1) . (2.1)

The ATT measures the expected treatment effect for a treated observation.

2.2.2 Conventional Decomposition

As described in Section 2.1, the estimation of causal intensive margin effects entails two
selection problems. The first selection problem arises from confounding variables, the sec-
ond selection problem arises from conditioning on observations with positive outcomes. To
illustrate the second selection problem, we consider in this subsection the case of random
treatment assignment, and thus eliminate the first selection problem. This illustration closely
follows Staub (2014). Random treatment assignment implies that treatment is independent
of the potential outcomes, i.e. (Y 1

i,t, Y
0
i,t) ⊥⊥ Di. Hence, the ATT at time t is identified by the

difference in mean outcomes of treated and untreated:8

ATTt = E(Y 1
i,t|Di = 1)− E(Y 0

i,t|Di = 1) (2.2)
= E(Yi,t|Di = 1)− E(Yi,t|Di = 0) (2.3)

A non-negative outcome (with a point mass at zero) is often decomposed into an extensive
and an intensive part as E(Yi,t) = E(Yi,t|Yi,t > 0)P (Yi,t > 0). Similar to Staub (2014), the

7Note that the treatment indicator is not indexed with a time index, i.e. Di = 1 for individuals treated
between t− 1 and t, and Di = 0 for individuals not treated between t− 1 and t.

8In the case of random treatment assignment, the average treatment effect on the treated is equal to the
average treatment effect, defined as ATEt = E(Y 1

i,t − Y 0
i,t).

66



difference in mean outcomes can then be rewritten as

ATTt =E(Yi,t|Di = 1)− E(Yi,t|Di = 0) (2.4)
=E(Yi,t|Yi,t > 0, Di = 1)P (Yi,t > 0|Di = 1) (2.5)
− E(Yi,t|Yi,t > 0, Di = 0)P (Yi,t > 0|Di = 0) (2.6)

=
[
P (Yi,t > 0|Di = 1)− P (Yi,t > 0|Di = 0)

]
E(Yi,t|Yi,t > 0, Di = 1) (2.7)

+
[
E(Yi,t|Yi,t > 0, Di = 1)− E(Yi,t|Yi,t > 0, Di = 0)

]
P (Yi,t > 0|Di = 0) . (2.8)

The terms in (2.7) represent the extensive margin effect, the terms in (2.8) the intensive
margin effect. Under random treatment, the terms in (2.7) and (2.8) can be rewritten as

ATTt =
[
P (Y 1

i,t > 0)− P (Y 0
i,t > 0)

]
E(Y 1

i,t|Y 1
i,t > 0) (2.9)

+
[
E(Y 1

i,t|Y 1
i,t > 0)− E(Y 0

i,t|Y 0
i,t > 0)

]
P (Y 0

i,t > 0) . (2.10)

The difference in (2.9) is a causal comparison and captures the causal effect of treatment on
the probability of having a positive outcome. However, the difference in (2.10) does generally
not have a causal interpretation, because we compare two possibly different subgroups of the
population. The subgroup with a positive outcome in case of treatment (Y 1

i,t > 0) and the
subgroup with a positive outcome in case of no treatment (Y 0

i,t > 0). Hence, conditioning on
positive outcomes induces a selection problem. As a result, the difference in mean outcomes
of treated and untreated - conditional on positive outcomes - does not identify the causal
intensive margin effect (without additional assumptions, see Appendix 2.A). In the next
section, we use a decomposition in which both the extensive and the intensive part have a
causal interpretation.

2.2.3 Causal Decomposition

Following Lee (2012) and Staub (2014), we define four exhaustive and mutually exclusive
subgroups based on the joint distribution of potential outcomes in period t:

Table 2.1: Subgroups Based on the Joint Distribution of Potential Outcomes in Period t

Y 0
i,t = 0 Y 0

i,t > 0

Y 1
i,t = 0 Nonparticipants Switchers 2

Y 1
i,t > 0 Switchers 1 Participants

Based on this definition, we decompose the average treatment effect on the treated (ATT)
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at time t as follows:

ATTt = E(Y 1
i,t − Y 0

i,t|Di = 1) (2.11)
= E(Y 1

i,t|Y 1
i,t > 0, Y 0

i,t = 0, Di = 1)P (Y 1
i,t > 0, Y 0

i,t = 0|Di = 1) (2.12)
− E(Y 0

i,t|Y 1
i,t = 0, Y 0

i,t > 0, Di = 1)P (Y 1
i,t = 0, Y 0

i,t > 0|Di = 1) (2.13)
+ E(Y 1

i,t − Y 0
i,t|Y 1

i,t > 0, Y 0
i,t > 0, Di = 1)P (Y 1

i,t > 0, Y 0
i,t > 0|Di = 1) (2.14)

The terms in (2.12) and (2.13) represent the weighted causal extensive margin effect.
The term in (2.12) describes the effect of treatment on the outcome of individuals with
positive outcome in case of treatment and zero outcome in case of no treatment (Switchers
1), weighted by the fraction of Switchers 1. The term in (2.13) describes the effect of
treatment on the outcome of individuals with zero outcome in case of treatment and positive
outcome in case of no treatment (Switchers 2), weighted by the fraction of Switchers 2. The
contribution of individuals with zero outcome in the cases of treatment and no treatment
(Nonparticipants) is zero and therefore dropped.

The term in (2.14) represents the weighted causal intensive margin effect. It captures
the effect of treatment on the outcome of individuals having a positive outcome irrespective
of treatment status (Participants), weighted by the fraction of Participants.

In this decomposition, both the extensive margin effect and the intensive margin effect
have a causal interpretation.

2.3 Identification

In this chapter we are interested in the intensive margin effect. Hence, we focus on the
first term in (2.14). In this section, we discuss identification of the intensive margin average
treatment effect on the treated (IMATT),

IMATTt = E(Y 1
i,t − Y 0

i,t|Y 1
i,t > 0, Y 0

i,t > 0, Di = 1) (2.15)

= E

E(Y 1
i,t − Y 0

i,t|Y 1
i,t > 0, Y 0

i,t > 0, Di = 1, Xi = x)︸ ︷︷ ︸
γt(x)

∣∣∣∣Y 1
i,t > 0, Y 0

i,t > 0, Di = 1
.

(2.16)

We will first derive sufficient conditions under which γt(x), i.e. the conditional-on-X
version of the intensive margin average treatment effect on the treated, is identified. In a
second step, we state conditions under which the conditional-on-X version can be aggregated
to E(Y 1

i,t − Y 0
i,t|Y 1

i,t > 0, Y 0
i,t > 0, Di = 1).
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2.3.1 Difference-in-Difference on Positive Outcomes

Difference-in-difference on positive outcomes is given by the difference of the time differences
between treated and untreated observations

γDiDt (x) =E(Yi,t − Yi,t−1|Yi,t > 0, Yi,t−1 > 0, Di = 1, Xi = x) (2.17)
−E(Yi,t − Yi,t−1|Yi,t > 0, Yi,t−1 > 0, Di = 0, Xi = x).

The following sufficient conditions identify the intensive margin average treatment effect
on the treated.

Proposition 1 (Identification Difference-in-Difference on Positive Outcomes)
Sufficient conditions to identify the intensive margin average treatment effect on the treated
using difference-in-difference on positive outcomes are

1. stable unit treatment value assumption (SUTVA),

2. no pre-treatment effect,

3. common trend in positive outcomes,

4. no effect of treatment on covariates,

5. overlap,

6. treatment monotonicity at the extensive margin, and

7. time monotonicity at the extensive margin.

Assumptions 1-5 are also required in similar form in standard difference-in-difference. As-
sumptions 6 and 7 are specific to difference-in-difference on positive outcomes. These assump-
tions are additionally required to eliminate the selection problem arising from conditioning
on individuals with positive outcomes. In the following we describe the assumptions in more
detail.

Assumption 1 (SUTVA) The stable unit treatment value assumption is given by

Yi,t = (1−Di)Y 0
i,t +DiY

1
i,t ∀i, and

Yi,t−1 = (1−Di)Y 0
i,t−1 +DiY

1
i,t−1 ∀i,

where Di ∈ {0, 1} denotes treatment status.

The SUTVA assumption ensures that we actually observe the potential outcomes in the
treatment and control groups. The SUTVA assumption implies that the observed outcome
of individual i only depends on the potential outcomes and the treatment status Di, but
not on the treatment status Dj of any other individual j. Thus, SUTVA rules out general
equilibrium effects and spill-over effects.

69



Assumption 2 (No pre-treatment effect) The no pre-treatment effect assumption is given
by

E(Y 1
i,t−1 − Y 0

i,t−1|Yi,t > 0, Yi,t−1 > 0, Di = 1, Xi = x) = 0 for all x in the support of Xi.

The no pre-treatment effect assumption requires that the treatment effect in the pre-treatment
period is zero. Hence in expectation, individuals do not change their behavior in period t−1
because they will be treated between period t− 1 and t.9

Assumption 3 (Common trend in positive outcomes) The common trend in positive
outcomes assumption is given by

E(Y 0
i,t − Y 0

i,t−1|Yi,t > 0, Yi,t−1 > 0, Di = 1, Xi = x)
= E(Y 0

i,t − Y 0
i,t−1|Yi,t > 0, Yi,t−1 > 0, Di = 0, Xi = x) for all x in the support of Xi.

The common trend in positive outcomes assumption represents the key assumption for
identification. The common trend in positive outcomes assumption is closely related to the
standard common trend assumption, except that we require the common trend to hold in
the subsample of individuals with a positive outcome in period t and t− 1.10 The common
trend in positive outcomes assumption requires that the treated and the control group would
experience the same time trend in case of no treatment.11 As Lechner (2010) points out, the
common trend assumption can be rewritten as a ”constant bias” assumption. That is, the
bias arising from unobserved confounders is assumed to be constant over time.

Assumption 4 (No effect of treatment on covariates) The no effect of treatment on
covariates assumption is given by

X1
i = X0

i = Xi ∀i .

The no effect of treatment on covariates assumption is required to ensure that condition-
ing on X does not condition away parts of the causal effect we are interested in, or introduce
a collider bias.12

Assumption 5 (Overlap) The overlap assumption is given by

P (Di = 1|Yi,t > 0, Yi,t−1 > 0, Xi = x) < 1 for all x in the support of Xi.

9Using SUTVA, the no pre-treatment effect assumption can be rewritten to E(Y 1
i,t−1 − Y 0

i,t−1|Xi =
x, Y 1

i,t > 0, Y 1
i,t−1 > 0, Di = 1) = 0, which is the version used in the proof of identification.

10In the standard difference-in-differences, the common trend assumption is given by E(Y 0
i,t−Y 0

i,t−1|Di =
1) = E(Y 0

i,t − Y 0
i,t−1|Di = 0).

11Using SUTVA, the common trend in positive outcomes assumption can be rewritten to E(Y 0
i,t −

Y 0
i,t−1|Y 1

i,t > 0, Y 1
i,t−1 > 0, Di = 1, Xi = x) = E(Y 0

i,t − Y 0
i,t−1|Y 0

i,t > 0, Y 0
i,t−1 > 0, Di = 0, Xi = x), which is

the version used in the proof of identification.
12See footnote 10 in Chapter 1.
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The overlap assumption requires that for all x in the support of Xi, there exist not only
treated individuals in the subsample with positive outcomes in period t and t− 1.

Assumption 6 (Treatment monotonicity at the extensive margin) The treatment
monotonicity at the extensive margin assumption is given by

Y 1
i,t > 0 ⇒ Y 0

i,t > 0 ∀i, or
Y 0
i,t > 0 ⇒ Y 1

i,t > 0 ∀i.

The assumption of treatment monotonicity at the extensive margin states that a positive
outcome in case of treatment implies a positive outcome in case of no treatment or vice
versa. Therefore, the treatment response is monotone with respect to the extensive margin
decision. Note that this assumption only restricts the sign of the extensive margin effect.
Thus, given the potential outcome in case of treatment is positive, the potential outcome in
case of no treatment is allowed to be higher or lower than the potential outcome in case of
treatment. The assumption only requires that the potential outcome in case of no treatment
is positive.

Assumption 7 (Time monotonicity at the extensive margin) The time monotonic-
ity at the extensive margin assumption is given by

Y 0
i,t > 0 ⇒ Y 0

i,t−1 > 0 ∀i, and
Y 1
i,t > 0 ⇒ Y 1

i,t−1 > 0 ∀i.

The assumption of time monotonicity at the extensive margin states that a positive outcome
in period t implies a positive outcome in period t − 1, both in case of treatment and no
treatment. Thus, we assume that there are no individuals with a positive outcome in period
t who have a zero outcome in period t− 1. This assumption again only restricts the sign of
the extensive margin effect. Given the potential outcome in period t is positive, the potential
outcome in period t−1 is allowed to be higher or lower than the potential outcome in period
t.

Proof Assuming SUTVA, equation (2.17) can be rewritten to

γDiDt (x) =E(Y 1
i,t − Y 1

i,t−1|Y 1
i,t > 0, Y 1

i,t−1 > 0, Di = 1, Xi = x) (2.18)
−E(Y 0

i,t − Y 0
i,t−1|Y 0

i,t > 0, Y 0
i,t−1 > 0, Di = 0, Xi = x) .

Adding and subtracting E(Y 0
i,t−1|Y 1

i,t > 0, Y 1
i,t−1 > 0, Di = 1, Xi = x) and
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E(Y 0
i,t|Y 1

i,t > 0, Y 1
i,t−1 > 0, Di = 1, Xi = x) to equation (2.18) and rearranging yields

γDiDt (x) = E(Y 1
i,t − Y 0

i,t|Y 1
i,t > 0, Y 1

i,t−1 > 0, Di = 1, Xi = x) (2.19)
+ E(Y 0

i,t−1 − Y 1
i,t−1|Y 1

i,t > 0, Y 1
i,t−1 > 0, Di = 1, Xi = x) (2.20)

+ E(Y 0
i,t − Y 0

i,t−1|Y 1
i,t > 0, Y 1

i,t−1 > 0, Di = 1, Xi = x) (2.21)
+ E(Y 0

i,t−1 − Y 0
i,t|Y 0

i,t > 0, Y 0
i,t−1 > 0, Di = 0, Xi = x) . (2.22)

Assuming SUTVA and common trend in positive outcomes, the sum of the two terms in (2.21)
and (2.22) equals 0. Moreover, under the no pre-treatment effect assumption, the sum of the
term in (2.20) is equal to zero. Assuming time and treatment monotonicity at the extensive
margin, the term in (2.19) can be rewritten to E(Y 1

i,t−Y 0
i,t|Y 1

i,t > 0, Y 0
i,t > 0, Di = 1, Xi = x).13

This identifies the conditional-on-X version of the intensive margin average treatment effect
on the treated.

The overlap assumption then guarantees that all conditional-on-X versions of the IMATT
exist. Based on (2.15), the conditional-on-X versions are aggregated with respect to the
distribution of X in the subsample with Y 1

i,t > 0, Y 0
i,t > 0, and Di = 1. Assuming time and

treatment monotonicity at the extensive margin, this subsample is identical to the subsample
with Y 1

i,t > 0, Y 1
i,t−1 > 0, and Di = 1.14 By SUTVA, this subsample is again identical to the

subsample with Yi,t > 0, Yi,t−1 > 0, and Di = 1, which is an observed subsample.

An obvious alternative to difference-in-difference is the simple difference estimator, given by

γDt (x) = E(Yi,t|Yi,t > 0, Di = 1, Xi = x)− E(Yi,t|Yi,t > 0, Di = 0, Xi = x) . (2.23)

In Appendix 2.A, we state sufficient conditions under which the simple difference estimator
identifies the conditional-on-X intensive margin average treatment effect on the treated.

2.3.2 Special Case: Random Treatment

When treatment is randomly assigned, we do not need to condition on X to identify the
causal effect. If we do not condition on X, we do not require the overlap and the no effect of
treatment on covariates assumptions. The other assumptions are still required to identify the
intensive margin average treatment effect on the treated. A further implication of random
treatment is that we can also identify the ATE, since the ATT equals the ATE under random
treatment.

13 By the time monotonicity at the extensive margin, the conditioning set can be reduced to E(Y 1
i,t −

Y 0
i,t|Y 1

i,t > 0, Di = 1, Xi = x). Using the treatment monotonicity at the extensive margin, the conditioning
set can again be expanded to E(Y 1

i,t − Y 0
i,t|Y 1

i,t > 0, Y 0
i,t > 0, Di = 1, Xi = x).

14Analogous to the rewriting of (2.19), see footnote 13.
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2.4 Estimation and Inference

Difference-in-difference estimation requires estimating different conditional expectations.
Here we adopt a split sample approach. Let ∆Yi,t = Yi,t − Yi,t−1. For the difference-in-
difference on positive outcomes estimator, we first estimate

m1(x) = E(∆Yi,t|Yi,t > 0, Yi,t−1 > 0, Di = 1, Xi = x) , and (2.24)
m0(x) = E(∆Yi,t|Yi,t > 0, Yi,t−1 > 0, Di = 0, Xi = x) , (2.25)

using ordinary least squares. That is, we regress ∆Yi,t on Xi separately in the treated sample
and in the untreated sample, restricted to the observations with positive outcomes in period
t and t−1. Since we condition the sample on observations with a positive outcome in period
t and t − 1, we require panel data.15 Using the fitted functions m̂1(x) and m̂0(x), we then
calculate fitted values m̂1(Xi) and m̂0(Xi). The intensive margin average treatment effect
on the treated is then estimated as

̂IMATT
DID

t = 1
NT

∑
i:Yi,t>0,
Yi,t−1>0,
Di=1

[
m̂1(Xi)− m̂0(Xi)

]
, (2.26)

where NT is the number of treated observations with positive outcome in period t and t−1.16

To conduct inference, we employ a nonparametric quantile bootstrap (Efron & Tibshirani,
1993). From the sample of observations with positive outcomes in period t and t − 1, we
repeatedly draw a bootstrap sample of the same sample size. In the bootstrap sample, we
estimate the IMATT as described above. This gives a distribution of bootstrap estimated
IMATTs: ̂IMATT

1
t , . . . , ̂IMATT

B

t , where B is the number of bootstrap replications. We
then construct a bootstrap estimated confidence interval as

[q∗α/2, q
∗
1−α/2] , (2.27)

where q∗1−α/2 is the (1− α/2)-percentile of the distribution of bootstrap estimated IMATTs.

2.5 Empirical Application: Causal Effect of Reaching
the Full Retirement Age on Working Hours

We apply the difference-in-difference methodology to estimate the causal intensive margin
effect of reaching the full retirement age on working hours of women. We exploit a pension
reform in Switzerland taking place in 2004. In this pension reform, the full retirement age

15This marks a difference to the standard difference-in-difference estimator, for which it is also possible
to use repeated cross-sections.

16Alternatively, one could replace m̂1(Xi) in (2.26) with ∆Yi,t, such that it would not be necessary to
estimate m̂1(x).
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(FRA) of women was increased from age 63 to age 64.17 This implies that women with
year of birth 1941 or earlier reach FRA at age 63, while women with year of birth 1942
or later reach FRA at age 64. We use data from the Swiss Labor Force Survey (SLFS)
from 2002-2009. The outcome of interest is working hours, denoted by Yi,t.18 We restrict
the sample to women aged 63. Therefore, treatment Di = 1 for women who have reached
FRA (year of birth 1941 or earlier), and Di = 0 for women who have not reached FRA
(year of birth 1942 or later). Since the reform affects individuals only based on their year of
birth, we assume that confounding is not a problem. For illustrative purposes, we include
a categorical education variable and a dummy for being a Swiss citizen. We consider two
estimation samples. The first sample consists of women with year of birth 1941 or 1942. That
is, women exactly at the threshold of the pension reform. This sample is cleaner in terms
of identification, but the small number of observations decreases the power. For this reason
we consider a second estimation sample, which includes women with year of birth 1939 to
1946. This sample includes more observations, but might pose a threat to identification if
there is a time trend in working hours.

2.5.1 Discussion: Assumptions

With the exception of time monotonicity at the extensive margin and overlap, we cannot
directly test the identifying assumptions. Instead, we propose alternative tests that can be
used to motivate the identifying assumptions and discuss whether the assumptions are likely
to be fulfilled in the context of our empirical application.19

SUTVA: This assumption cannot be tested. There is evidence for spillover effect within
couples (see Chapter 3). That is, the labor supply of one individual depends on whether the
spouse has reached FRA. We are aware that this might pose a threat for identification, but
assume that the spillover effects are negligible.
No pre-treatment effect: This assumption rules out that people adjust their working hours in
anticipation of reaching FRA in the next period. We cannot directly test this assumption. We
motivate the assumption by comparing the mean working hours in period t− 1, conditional
on having positive working hours in period t and t − 1. The mean in the control group is
23.8 hours, in the treatment group 24.6 hours. A simple Welch two sample t-test does not
reject the null hypothesis of equal means (p-value: 0.54). This indicates that the assumption
is fulfilled. Moreover, if there is a pre-treatment effect, this effect will likely have the same
sign as the treatment effect. As a result, the estimated treatment effect could be interpreted
as a lower bound.
Common trend in positive outcomes: This assumption requires that the treatment group

17The FRA denotes the age at which a first pillar pension can be claimed without a deduction. There
was a second pension reform in 2001, increasing the FRA of women from 62 to 63, which is not considered
in this application.

18We use contracted hours for wage employed and usual hours for self employed as our measure of working
hours.

19The (alternative) tests are always based on the larger estimation sample, i.e. the sample including
women with year of birth 1939 to 1946.
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would experience the same time trend in working hours in case of no treatment as the
control group. We cannot directly test this assumption, but we motivate the assumption by
examining the pre-treatment trends of the control and treatment group. In Figure 2.1, we
plot the mean working hours of women with positive hours in period t, t− 1 and t− 2. We
observe that the trends between period t− 2 and t− 1 are roughly parallel, indicating that
the assumption is fulfilled.

Figure 2.1: Assessment of Common Trend Assumption
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Note: Dots indicate the mean working hours of women aged 63 with positive
working hours in period t, t-1 and t-2. Bars indicate the 95% normal approxi-
mation confidence interval for the mean. Year of birth between 1939 and 1946.
Treated is the group which reaches FRA in period t (women with year of birth
1941 or earlier), Control is the group which does not reach FRA in period t
(women with year of birth 1942 or later).

No effect of treatment on covariates: In the empirical application, we include a categorical
education variable and a dummy for being a Swiss citizen. It seems unlikely that reaching
FRA has an effect on these variables.
Overlap: This assumption can be tested. In each covariate cell, we calculate the fraction of
treated observations. The results are presented in Table 2.3 in Appendix 2.B. We observe
that there is no covariate cell with only treated observations. Therefore, the assumption is
fulfilled.
Treatment monotonicity at the extensive margin: This assumption rules out that people start
to work because they reach FRA. There are indeed incentives to take up a job after reaching
FRA. For example, part of the earnings are exempted from social security contributions.
This increases the net wage. On the other hand, it seems plausible that reaching FRA either
has no effect or drives people out of the labor market.
Time monotonicity at the extensive margin: This assumption can be tested. In the treated
and control subsample, we calculate the fraction of individuals with positive working hours
in period t, conditional on not working in period t− 1. In the sample of women with year of
birth 1939-46, 5% of the treated and 7.4% of the control sample state that they returned to
work after having not worked in the period before. This poses a threat to our identification.
However, the overall pattern in the age range 60-70 is that people rather leave the labor
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force as they become older.

2.5.2 Estimation Results

The results of the difference-in-difference estimation are presented in Table 2.2. In the esti-
mation sample including only women with year of birth 1941-42 (left column), the estimated
intensive margin average treatment effect on the treated is -5.00. That is, reaching FRA
reduces the working hours of women with positive working hours irrespective of whether they
have reached FRA or not on average by 5 hours. The bootstrap estimated 95% confidence
interval does not include zero, indicating that the effect is statistically significantly different
from zero. In the sample including women with year of birth 1939-46 (right column), the
estimated intensive margin ATT is -4.22. Again, the bootstrap estimated 95% confidence
interval does not include zero. This analysis provides evidence that women react at the
intensive margin when reaching FRA.

Table 2.2: Results Difference-in-Difference on Positive Outcomes

Outcome: Working Hours

Sample 1941-42 Sample 1939-46

IMATT: FRA reached -5.00 -4.22

95% C.I. [-8.47, -1.58] [-6.58, -1.95]

Obs. (treat/control) 63/87 156/405

Note: Confidence interval based on 1000 bootstrap replications. Sample
includes women aged 63 with positive working hours in period t and t-1.
Women with year of birth 1942 or later have FRA 64 (Control), women
with year of birth 1941 or earlier have FRA 63 (Treated). The left
column presents the results for women with year of the birth 1941-1942,
and the right column those for women with year of birth 1939-1946.

2.6 Conclusion

This chapter extends the literature on the identification and estimation of causal intensive
margin effects. The intensive margin effect is of interest when subeffects are masked by the
total effect. This is the case, for example, when the extensive and intensive margin effect
have different signs. We use difference-in-difference methods to identify the causal intensive
margin effect. We derive sufficient conditions under which the difference-in-difference esti-
mator on positive outcomes identifies the causal intensive margin effect. We demonstrate
that the difference-in-difference estimator on positive outcomes, compared to the standard
difference-in-difference estimator, additionally requires time and treatment monotonicity at
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the extensive margin. Our proposed difference-in-difference estimator represents an alter-
native to models for outcomes with corner solutions or selection models. We apply the
methodology to estimate the causal intensive margin effect of reaching the full retirement
age on working hours.
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Appendix 2.A Identification Simple Difference
Estimator on Positive Outcomes

The simple difference estimator on positive outcomes is given by

γDt (x) = E(Yi,t|Yi,t > 0, Di = 1, Xi = x)− E(Yi,t|Yi,t > 0, Di = 0, Xi = x). (2.28)

The following sufficient conditions identify the conditional-on-X intensive margin average
treatment effect on the treated.

Proposition 2 (Identification simple difference estimator on positive outcomes)
Sufficient conditions to identify the causal intensive margin effect using the simple difference

estimator on positive outcomes are:

1. SUTVA (assumption 1),

2. no effect of treatment on covariates (assumption 4),

3. overlap (assumption 5),

4. unconfoundedness (assumption 8), and

5. no Switchers (assumption 9),

Or

5. conditional mean independence (assumption 10).

Assumption 8 (Unconfoundedness) The unconfoundedness assumption is given by

(Y 1
i,t, Y

0
i,t) ⊥⊥ Di |Xi .

The unconfoundedness assumption requires that treatment is independent of the potential
outcomes, conditional on covariates Xi.

Assumption 9 (No Switchers) The assumption of no Switchers is given by

Y 1
i,t > 0 ⇔ Y 0

i,t > 0 ∀i.

The assumption of no Switchers states that the potential outcome in case of treatment is
positive if and only if the potential outcome in case of no treatment is positive. It therefore
excludes the possibility that individuals have a positive outcome in case of treatment and a
zero outcome in case of no treatment (Switchers 1), or vice versa (Switchers 2).
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Assumption 10 (Conditional mean independence) The conditional mean independence
assumption is given by

E(Y 1
i,t|Y 1

i,t > 0, Y 0
i,t = 0, Di = 1, Xi = x) = E(Y 1

i,t|Y 1
i,t > 0, Y 0

i,t > 0, Di = 1, Xi = x), and
E(Y 0

i,t|Y 1
i,t = 0, Y 0

i,t > 0, Di = 1, Xi = x) = E(Y 0
i,t|Y 1

i,t > 0, Y 0
i,t > 0, Di = 1, Xi = x).

The assumption of conditional mean independence states that the expected potential out-
come in case of treatment of Switchers 1 is equal to the expected potential outcome in case
of treatment of Participants. Furthermore, the expected potential outcome in case of no
treatment of Switchers 2 is equal to the expected potential outcome in case of no treatment
of Participants.

Proof Under SUTVA and unconfoundedness, and by the law of iterated expectations, equa-
tion (2.28) can be rewritten as

γDt (x) =
[
pE(Y 1

i,t|Y 1
i,t > 0, Y 0

i,t > 0, Di = 1, Xi = x) (2.29)

+(1− p)E(Y 1
i,t|Y 1

i,t > 0, Y 0
i,t = 0, Di = 1, Xi = x)

]
(2.30)

−
[
qE(Y 0

i,t|Y 1
i,t > 0, Y 0

i,t > 0, Di = 1, Xi = x) (2.31)

+(1− q)E(Y 0
i,t|Y 1

i,t = 0, Y 0
i,t > 0, Di = 1, Xi = x)

]
,

where p ≡ P (Y 0
i,t > 0|Y 1

i,t > 0, Di = 1, Xi = x) and q ≡ P (Y 1
i,t > 0|Y 0

i,t > 0, Di = 1, Xi = x).
This term is equal to the causal intensive margin of interest in equation (2.15) if a) p = q = 1
(assumption of no Switchers), or if b) the corresponding expectations in the brackets are
identical, i.e. the expected potential outcome in case of treatment of Switchers 1 is equal to
the expected potential outcome of Participants, and the expected potential outcome in case
of no treatment of Switchers 2 is equal to the expected potential outcome of Participants
(assumption of conditional mean independence).
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Appendix 2.B Overlap

Table 2.3: Analysis of Overlap

Secondary Education Higher Education Swiss citizen Fraction Treated

0 0 0 0.091

0 0 1 0.308

0 1 0 0.350

0 1 1 0.262

1 0 0 0.154

1 0 1 0.298

Note: This table displays the fraction of treated observations (last column) for all
possible covariate cells.
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Chapter 3

Labor or Leisure? Labor Supply of
Older Couples and the Role of Full
Retirement Age1

3.1 Introduction

Declining fertility rates and increasing life expectancy force many developed countries to
reform their pension systems. Designing policy reforms requires a detailed understanding of
the labor supply behavior of older workers. For this reason, a large body of literature has
estimated labor supply responses of individuals directly affected by pension reforms (direct
effect), see e.g. Börsch-Supan and Schnabel (1999), or Mastrobuoni (2009).

The approach focusing on the direct effect abstracts from the fact that a large proportion
of older workers are married.2 Several studies find that older couples coordinate their exit
from the labor force, see e.g. Gustman and Steinmeier (2004) or Hospido and Zamarro
(2014). As a result, changes in incentives of one member of the couple may have spillover
effects on the labor supply of the spouse (indirect effect). In contrast to the evidence on
the direct effect, existing studies on indirect effects find ambiguous results, depending on the
particular country and reform under consideration.

Previous studies examine the indirect effect on the participation decision (extensive mar-
gin). Changes at the extensive margin, however, do not fully capture the change in total
labor supply. Individuals may adjust their working hours to change their labor supply (inten-
sive margin). The prevalence of gradual retirement indicates that older workers use working
hours to adjust their labor supply, see Kantarci and Van Soest (2008) for a summary of
evidence in Europe and the US.

1This chapter is joint work with Markus Hersche. An earlier version was published as working paper
“Labor or Leisure? Labor Supply of Older Couples and the Role of Full Retirement Age”, Netspar Working
Paper Series, 03/2018, see Hersche and Moor (2018). This chapter is also part of the doctoral thesis
”Theoretical and Empirical Essays on Labor Supply of the Elderly”, Diss. ETH No. 25377, see Hersche
(2018).

2According to census data from the Swiss Federal Office for Statistics, 75% of men aged between 55 and
70, and 64% of women in Switzerland were married in 2010.
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In this chapter, we estimate the effect of having a spouse at or above the full retirement
age (FRA) on labor supply at extensive margin and intensive margin in Switzerland. FRA
represents the age at which first pillar pensions can be claimed without deductions. The full
retirement age is of interest in two ways. First, full retirement age in the first pillar represents
the main policy instrument for the government. Knowledge on the expected spousal reaction
will provide information on spillover effects of future pension reforms. Second, changes in
hours and hazard rates of retirement peak at FRA. Therefore, the estimate on spousal labor
supply reaction will be informative on the relationship between spousal retirement and own
labor supply.

We find that the labor force participation of women decreases on average by approxi-
mately 3 percentage points in response to the spouse reaching FRA. By contrast, men do not
react at the extensive margin. At the intensive margin, we find only small and mostly non-
significant effects for both men and women. We argue that the response can be explained
by complementarity in leisure and liquidity effects. For women, the absence of a substantial
intensive margin reaction can be explained by the presence of fixed costs of work.

We use two sources of variation to identify the effect. First, we exploit variation in age
difference within couples. Second, we use a pension reform which increased the FRA of
women from 62 to 64. In our analysis, the treatment group consists of individuals with a
spouse who has reached FRA. The control group consists of individuals whose spouse has not
yet reached FRA. The key identifying assumption of our approach is that, after controlling
for confounders, a difference in labor supply arises only from the difference in the FRA status
of the spouse.

In contrast to Chapters 1 and 2, we do not explicitly use the potential outcome framework
to describe causal effects. Rather, we directly model realized outcomes, and interpret model
parameters as causal effects. At the extensive margin, we estimate the causal effect using a
probit model. At the intensive margin, we employ a Tobit, a two-part, and a difference-in-
difference estimator on positive outcomes. The approach we take in this chapter has several
drawbacks. For example, since the causal effect is a fixed model parameter, this approach
does not allow for treatment effect heterogeneity. Moreover, it is not possible to define the
causal effect without referring to a specific model (Imbens & Wooldridge, 2009).

The analysis is based on data drawn from the Swiss Labor Force Survey for the time
period between 1991 and 2009. In contrast to administrative Social Security data sets, this
data set provides information on working hours. Furthermore, it includes rich information
on labor supply and a large set of sociodemographic variables relating to the interviewed
individual and the spouse. In this survey, individuals are interviewed every year for up to
five consecutive years. We exploit the panel structure of the survey to estimate the intensive
margin effect with the difference-in-difference estimator on positive outcomes.

This chapter relates to the literature on labor supply of older couples pioneered by Hurd
(1990), Zweimüller, Winter-Ebmer, and Falkinger (1996), and Blau (1998). In this literature,
two effects are frequently studied. First, the literature studies the effect of spouse B retiring
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on the labor supply of spouse A. Second, studies examine the effect of spouse B reaching
FRA on the labor supply of spouse A. In this chapter, we contribute to the latter literature.
This chapter is closely related to contributions by Cribb, Emmerson, and Tetlow (2013), Selin
(2017), Stancanelli (2017) and Lalive and Parrotta (2017). These contributions use social
security reforms or pension legislation to identify the causal effect of the spouse reaching
FRA. Cribb et al. (2013) analyze the spillover effects of an increase in female FRA in the
UK. They find positive spillover effects on the labor supply of men. Selin (2017) exploits an
occupational pension reform in Sweden which primarily affected female workers. He finds no
evidence for a response of men married to affected women. Stancanelli (2017) analyzes the
1994 French pension reform which increased the contribution length required to receive the
maximum pension. She finds that the reform decreased the retirement probability of men
whose spouse was affected by the reform by approximately 1 percentage point. By contrast,
she finds no evidence that women react when their husband was affected by the reform.
Lalive and Parrotta (2017) use Swiss census data from 1990 and 2000 to estimate the effect
of pension eligibility on labor supply in a couple. They find that labor force participation of
women drops by 2 to 3 percentage points when their spouses reach pension eligibility age.
They find no significant effects for men. In contrast to the aforementioned contributions
examining the effect on the participation decision, we additionally investigate the causal
effect of the spouse reaching FRA on hours worked (intensive margin).

The remainder of this chapter is organized as follows. Section 3.2 describes the Swiss
pension and tax system, outlining the financial incentives faced by older couples. Section
3.3 outlines mechanisms that can explain the labor supply reaction when the spouse reaches
FRA. Sections 3.4 and 3.5 describe the data and general labor supply patterns. Section
3.6 presents the empirical approach. Results are presented in Section 3.7 and discussed in
Section 3.8. The last section concludes.

3.2 Incentives of Older Couples in Switzerland

In this section, we describe the financial incentives faced by older workers in Switzerland. In
particular, we focus on the description of incentives for older married couples.

3.2.1 Pension System

The Swiss pension system consists of three pillars. The old age and survivor insurance
(OASI) represents the first pillar. The OASI is a pay-as-you-go insurance, with a strong
redistributive motive. The OASI is financed by payroll taxes and government transfers. Its
main purpose is to cover basic living costs. Individual pension entitlements are a function of
contribution years and average earnings.3 Individuals who contributed each year from age
20 to FRA are entitled to a full pension. The FRA is defined as the age at which a first pillar
pension can be claimed without deductions. For each missing contribution year, benefits are

3Average earnings depend on the lifetime earnings, as well as on educational and care credits.
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reduced by at least 2.3%. Depending on average earnings, the monthly full pension in 2005
ranged from a minimum of 1075 CHF to a maximum of 2150 CHF.4 The sum of the two
individual pensions within a couple is capped at 150% of a maximum individual pension. It
is not possible to borrow against future first pillar entitlements.

Individuals reaching FRA can claim pensions and continue working. No earnings test
applies for pensions from the first pillar. In addition, workers are able to postpone claiming
pensions from the first pillar. The pension increases from 5.2% for a one-year delay to 31.5%
for a five-year delay. Individuals working past FRA continue paying payroll taxes, with an
allowance of 16’800 CHF. These contributions do not increase future pension entitlements.

Figure 3.1: Full Retirement Age of Men and Women by Year of Birth
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In the time period under consideration, the OASI was reformed once in 1997. Most
prominently, the FRA for women was increased in two steps from 62 to 64. In 2001, the
FRA was increased from 62 to 63. In 2004, the FRA was increased in a second step from 63
to 64. Furthermore, the possibility of claiming early retirement benefits from the first pillar
was introduced. Figure 3.1 depicts the evolution of the FRA for men and women by year of
birth.

The second pillar is an occupational pension scheme. The objective is to ensure the con-
tinuation of the living standard held prior to retirement. Contributions to the occupational
pension system are age-dependent and compulsory for wage employed above a given thresh-
old.5 In general, the regulated retirement age of occupational pension schemes coincides
with the FRA of the first pillar.6 However, pension funds are free to set more generous
regulations. Upon reaching the regulated retirement age, the retiree can choose between a
lifelong monthly annuity, a lump-sum transfer of the accumulated capital, or a combination
of both. The share of married men insured in the second pillar amounts to approximately
70%. By contrast, approximately 40% of women are insured in the second pillar.7 This can

4As a comparison, the monthly median labor income in Switzerland amounted to 5250 CHF (2005).
5Only the amount exceeding the threshold is insured. Threshold 1991: yearly earnings 19’200 CHF,

2009: yearly earnings 20’520 CHF.
6The regulated retirement age of occupational pension schemes is the age at which occupational pensions

can be claimed without deductions.
7See Figure 3.9 in Appendix 3.D.
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Figure 3.2: Average Tax Rates of Married Couples by Gross Labor Income
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Note: Average combined tax rates (federal, cantonal, community level) in cantonal capitals by year
and gross labor/pension income for a married couple. Standard deductions without verification
requirements for wage earners are applied. For retirees, standard deductions without verification
requirements for the case where both individuals have reached FRA are applied. Data source: Own
calculations, tax rates from Federal Tax Administration.

be explained by the fact that women have lower labor force participation rates and are more
likely to work part-time. The third pillar consists of voluntary, tax-favored savings.

3.2.2 Income Taxes

In contrast to the majority of OECD countries, Switzerland has a system where the income of
married couples is taxed based on the concept of family taxation. Income from both partners
is aggregated and taxed as a single unit. Tax rates for unmarried individuals and married
couples are different. Income is taxed at community, cantonal, and federal level. Cantons
have fiscal sovereignty, and are therefore free to set tax rates and establish deductions.

The income tax schedule in Switzerland is progressive by law. Gross labor income is
subject to a set of deductions. The left graph in Figure 3.2 displays the average tax rates for
a given gross labor income before social security deductions for the time period 1991-2006.
The average tax rates decreased slightly for all income brackets in the time period under
consideration. Pension income is not exempted from income taxation. First, second, and
third pillar pensions are generally taxed at the same rate as labor income. Similar to labor
income, retirees are eligible for a set of tax deductions.

The right graph in Figure 3.2 displays the average tax rates for a given gross pension
income.8 The average tax rates for retirees decreased moderately in the time period under
consideration. The differences over time between the average tax rates are however small.9

Occupational pension funds in Switzerland aim at a replacement rate of 50%-60%. Com-
8Before social security deductions.
9In 2007, the Federal tax administration changed the statistical procedure of reporting average tax rates

for retirees. Therefore, we do not report tax rates after 2007.
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bined with pension income from first pillar and third pillar, this results in a total replacement
rate of 70%-80%, see Bütler (2009) for a discussion. Tax rates therefore generally decrease
when an individual reaches FRA.

3.3 Mechanisms

Table 3.1 presents a non-exclusive list of mechanisms explaining a change in labor supply
of individual A when spouse B reaches FRA. The labor supply reaction of A depends on
whether the spouse B reduces labor supply when reaching FRA. Therefore, we divide the
analysis into two parts: the case in which B reduces labor supply (left column), and the
case in which B does not reduce labor supply (right column). The latter case includes the
situation where B retired before FRA. Furthermore, it includes the case where B continues
working without changing working hours. Although B does not reduce labor supply, a full
pension can be claimed when reaching FRA. The resulting change in income can have an
impact on A’s labor supply.

Table 3.1: Mechanisms and Expected Sign of Labor Supply Reaction to Spouse Reaching FRA

Mechanism Expected sign of labor supply reaction of individual A
when spouse B reaches FRA and . . .

B reduces labor supply B does not reduce labor supply

1. Complementarity in leisure Negative Zero

2. Liquidity Effect Positive Negative

3. Joint Taxation Positive Negative

4. Housework Positive Zero

First, we expect couples to enjoy their leisure time more when it is spent together.
Previous studies find evidence that complementarities in leisure are a strong driver of labor
market decisions in older couples, see e.g. Coile (2004) or Banks, Blundell, and Casanova Ri-
vas (2010). Therefore, if B reduces labor supply, complementarities in leisure lead, ceteris
paribus (cet. par.), to a decrease in labor supply of individual A. If B does not reduce labor
supply, the expected effect is zero.

Second, liquidity effects can occur as soon as spouse B reaches FRA and claims a pen-
sion.10 In the case where B reaches FRA, claims a pension, and reduces labor supply, there
is a drop in household income, since replacement rates are below one.11 Hence A, cet. par.,

10According to Bundesamt für Sozialversicherungen (2009), the proportion not claiming a first pillar pen-
sion at FRA amounted to less than 1% (2009). We disregard this possibility in the discussion of mechanisms.

11For both liquidity and tax mechanism, we assume that a reduction in labor income is not fully replaced
by pension income. Therefore, we exclude the case that household income increases when labor supply
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increases labor supply to compensate the loss in household income. In the case where B
reaches FRA and claims a pension, but does not reduce labor supply, the pension will, cet.
par., increase household income. Hence A, cet. par., decreases labor supply.

Third, due to the system of progressive joint taxation, the marginal tax rate of A increases
(decreases) if total household income increases (decreases). Evidence from other countries
suggests that labor supply of older workers increases with decreasing tax rates (Alpert &
Powell, 2014; Laun, 2017). If B reduces labor supply, cet. par., household income decreases.12

This decrease leads to a lower marginal tax rate for individual A, and therefore to an expected
increase in labor supply. If B does not reduce labor supply but claims a pension, the
household income increases. Therefore, the marginal tax rate for A increases, and we expect
a negative effect on the labor supply of individual A.

Fourth, there is evidence that retirement increases hours of housework (Ciani, 2016; Stan-
canelli & Van Soest, 2012). If individual B reduces labor supply and increases housework,
individual A may decrease housework. In this case, individual A may be willing to increase
labor supply. If B does not reduce labor supply, we expect no effect on labor supply of
individual A.

3.4 Data

For the analysis, we use data drawn from the Swiss Labor Force Survey (SLFS)13 for the time
period between 1991 and 2009. The SLFS is a rotating yearly panel of individuals above the
age of 15. The survey is administered by the Federal Statistical Office (FSO). Participation
in the survey is voluntary and individuals are interviewed for up to five consecutive years.
For the sample of individuals aged between 58 and 70, 30% participated in one interview,
19% in two interviews, 14% in three interviews, 9% in four interviews, and 28% in five
interviews. In the time period under consideration, the survey was carried out by telephone
in the second quarter (April-June) of each year. The number of respondents aged between
58 and 70 increased from 2233 in 1991 to 8825 in 2009.

The survey provides extensive information on sociodemographic variables, labor supply
status, earnings and household income of the respondent. The survey provides a variable for
the year of birth of the respondent, but not the birth date. The spouse of the respondent
is not directly interviewed. The respondent provides answers to questions on labor supply
behavior and age of the spouse. There is information on the age of the spouse, but not on the
year of birth. We impute the year of birth using the year of the interview and the age of the
spouse.14 There is sparse information on the health of the respondent and no information

decreases.
12See footnote 11.
13In German: Schweizerische Arbeitskräfteerhebung (SAKE).
14Given the year of interview and the age, the exact year of birth of the spouse is not identified (only a

range of two years is identified). Since treatment classification is based on year of birth, there are spouses in
the sample for whom we are not able to identify whether they have reached FRA or not. For example, the
year of birth of a female spouse aged 61 and observed in 2000 could be either 1939 (FRA 63) or 1938 (FRA
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on the health of the spouse.
For working individuals, the SLFS provides a set of variables describing the amount of

time spent at work. The set includes usual hours, contracted hours and actual hours in
the previous week. In this chapter, we use contracted hours per week as a measure of labor
supply for wage employed. The underlying survey question is: ”How many hours do you work
according to your written or verbal contract per week?”.15 For self-employed, our measure of
labor supply is usual working hours per week and the underlying survey question is: ”How
many hours do you usually work per week?”.16 We classify an individual as being in the labor
force if the individual reports positive weekly working hours. In the sensitivity analysis, we
check whether the results differ when using actual working hours in the previous week as an
alternative measure for labor supply. We do not use actual working hours in the previous
week in the main analysis since this variable contains more observations with zero working
hours who are nevertheless working, e.g. they were sick or on holidays in the previous week.
We consider this variable to be noisier and less reliable with respect to defining labor market
participation.

Based on a set of questions, the SLFS classifies each respondent as being either employed,
apprentice, unemployed, or non-participating. The group of non-participants includes dis-
abled individuals, retirees and others. Non-participants are not asked about their working
hours. We set the hours of unemployed and non-participants to zero.

In order to examine possible labor market frictions, we use desired hours as measure of
desired labor supply. The underlying question is: ”How many hours per week would you like
to work?”.17

3.5 Labor Supply Patterns

Before presenting the causal analysis, we examine the labor force patterns of older married
individuals in Switzerland. Figure 3.3 displays the labor force participation rates by age and
labor market status of the spouse for the time period 1991-2012.18

As illustrated in Figure 3.3a, labor force participation rates of married men with a working
spouse are between 5 and 25 percentage points higher than the rates of men with a non-
working spouse. The difference in participation rates between the two groups increases with
age. Furthermore, male participation rates remain high - at above 80% - until the age of 60.

62), depending on whether the birthday is before or after the day of the interview in that year. Mastrobuoni
(2009) deal with this issue by assuming that all birth dates within a year are equally likely. In contrast to
his approach, we do not include observations with uncertain treatment status.

15German: ”Wieviele Stunden pro Woche schaffen Sie gemäss mündlichem oder schriftlichem Arbeitsver-
trag?”. The corresponding SLFS variable is EK01.

16German: ”Wieviele Stunden schaffen Sie normalerweise pro Woche?”. The corresponding SLFS variable
is EK01.

17German: Wieviele Stunden in der Woche würden Sie gerne schaffen? The corresponding SLFS variable
is EK07. In contrast to similar surveys in other countries, individuals are not asked to assume a constant
hourly wage rate when answering the question for desired hours.

18Unlike our estimation samples (1991-2009), we use data until 2012 in order to have a larger sample size
for working individuals past FRA. The pattern is very similar for the time period 1991-2009.
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Female labor force participation rates are set out in Figure 3.3b. Again, the labor force
participation rates are substantially higher for women with a working spouse than for women
with a non-working spouse. In contrast to men, female labor force participation rates start
to drop before the age of 60.

Figure 3.3: Labor Force Participation Rates by Labor Market Status of the Spouse

Note: Labor force participation rates (LFP) by age and labor market status of the spouse. Average
values for period 1991-2012. Single and widowed individuals excluded. For women, only cohorts
born after 1941 (FRA 64) are considered. Shaded gray area represents the 95% confidence interval
for the mean estimate. Data source: Own calculations based on SLFS data, FSO.

Figure 3.4 displays the average weekly working hours by age and labor market status
of the spouse of individuals participating in the labor market. Men work an average of
approximately 40 hours per week before FRA is reached. In Switzerland, working 40 hours
corresponds to a full-time employment.19 There is a drop in hours worked at FRA. On
average, men whose wives are not in the labor market work fewer hours at all ages. The
difference is increasing with age.

Until the age of 57, the average working hours of women with a working husband are
lower compared to women with a non-working husband. There is no difference in working
hours between the ages of 58 and 61. Beyond the age of 62, women with a working husband
work, on average, more hours than women with a non-working husband. Since the confidence
intervals for the mean estimates overlap in most cases, these differences should be interpreted
with caution.

19The legal maximum weekly working time in Switzerland is set at 45 hours for industrial, administrative,
commercial, technical and sales jobs. All other sectors have a maximum of 50 hours. Working time regulation
did not change in the period under consideration (1991-2012).
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Figure 3.4: Average Weekly Working Hours by Labor Market Status of the Spouse

Note: Estimated average weekly working hours conditional on positive hours by age and labor
market status of the spouse. Contracted hours for wage employed and usual hours for self-employed
are used. Average values are for the period 1991-2012. Single and widowed individuals are excluded.
For women, only cohorts born after 1941 (FRA 64) are considered. Shaded gray area represents
the 95% confidence interval for the mean estimate. Data source: Own calculations based on SLFS
data, FSO.

3.6 Empirical Approach

We estimate the causal effect of having a spouse B at or above FRA (treatment) on the
labor supply of individual A. The total labor supply effect induced by having a spouse at or
above FRA can be decomposed into 1) the average change in working hours of those working
irrespective of treatment, plus 2) the average hours worked of those working in the case of
treatment, and not working in the case of no treatment, minus 3) the average hours worked
of those not working in the case of treatment, and working in the case of no treatment
(Angrist, 2001; Staub, 2014). We refer to individuals working irrespective of treatment as
Participants, to individuals working only in the case of treatment (or only in the case of no
treatment) as Switchers.

We are interested in two causal effects. First, the causal effect of treatment on the
probability of working (extensive margin). Second, the causal effect of treatment on working
hours of individuals having positive hours irrespective of treatment, i.e. individuals working
irrespective of whether their spouse has reached FRA or not (intensive margin).

3.6.1 Extensive Margin

Let hit denote weekly working hours of individual i in interview year t. We estimate the
extensive margin effect using a probit model of the form
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P (hit > 0|Tit,Xit) = Φ(α0 + α1Tit + Xitα2), (3.1)

where Φ(·) denotes the cumulative normal distribution. The treatment variable Tit is defined
as

Tit =

1 if the spouse of individual i is at or above FRA in period t,

0 otherwise.

The matrix of controls X includes age dummies, age of the spouse, age of the spouse
squared, education dummies, dummies for the year of the interview, a dummy whether the
household size is larger than two, and a dummy whether the respondent is a Swiss citizen.

We are interested in the average partial effect of Tit, which measures the causal effect
of having a spouse at or above the FRA on the probability of working. Our identifying
assumption is that after controlling for covariates X, respondents whose spouse has not yet
reached FRA (control group) do not differ from respondents whose spouse has reached FRA
(treatment group) with respect to observable and unobservable characteristics. Therefore,
the remaining differences in labor supply participation rates between the treatment and the
control group can be attributed to having a spouse at or above FRA.

We use two sources of variation to identify the effect. First, we exploit variation in
age difference within couples. The variation in age difference is depicted in Figure 3.8 in
Appendix 3.A. Second, we use a pension reform which increased the FRA for women in two
steps. In 2001, the FRA was increased from 62 to 63. In 2004, the FRA was increased in a
second step from 63 to 64, see Section 3.2.

A threat to our identification strategy are unobserved confounders affecting both; FRA
status of spouse B, and the labor supply of individual A. Potential unobserved confounders
include the health of spouse B, the birth of grand children, unobserved preferences, and
changes in tax rates over time.

The health of spouse B potentially affects the decision whether and how much individual
A works. Moreover, the health status of spouse B is associated with the age of spouse B,
and therefore also with whether the spouse has reached FRA. On average, the older a spouse
is, the lower the health status. We control for age of the spouse with a linear and a quadratic
term. Figure 3.10 in Appendix 3.E provides evidence that the specification with a linear
and a quadratic age term is sufficient to capture the effects of the age of spouse B on labor
supply of individual A. If this approximation is not sufficient to capture the effect of spousal
health, this poses a threat to our identification strategy. However, if reaching FRA affects
the health of spouse B directly, we would not want to control for the health of spouse B.
This case is part of the causal effect we want to measure.

The case of the birth of grandchildren is very similar. Grandchildren potentially affect
the decision whether and how much individual A works. Moreover, having grandchildren is
associated with the age of spouse B, and therefore also with whether the spouse has reached
FRA. On average, the older a spouse is, the older the children. The older the children, the
more likely are the children to have children themselves. Again, we assume that controlling
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for the age of individual A using dummies, and the age of spouse B with a linear and a
quadratic term is sufficient to capture unobserved effects from grandchildren.

Finally, unobserved preferences of individual A that affect the labor supply of A may
also be associated with the age of spouse B, see e.g. Bloemen and Stancanelli (2015). For
example, individuals with preferences for a younger spouse could be willing to work more
or work longer. We assume that controlling for the age of spouse B with a linear and a
quadratic term is sufficient to capture effects from these unobserved preferences.

Another concern could be changes in tax rates over time. By including year dummies we
capture changes in financial incentives induced by changes in tax rates over time. Moreover,
we find that the changes in tax rates over time are small, see Figure 3.2.

3.6.2 Intensive Margin

At the intensive margin, we are interested in the causal effect of having a spouse at or
above FRA on working hours of individuals working irrespective of whether their spouse has
reached FRA or not. We employ a Tobit, a two-part, and a difference-in-difference estimator.
For the intensive margin part of the two-part model as well as the difference-in-difference
estimator, the estimation sample is restricted to individuals with positive working hours.
For this reason, we need additional assumptions to identify the causal effect. The main issue
is that a potential selection problem arises when conditioning on individuals with positive
working hours (Angrist, 2001; Staub, 2014).20 Alternatively, a Heckman selection model
could be applied (Heckman, 1979). Although identification in the Heckman selection model
relies on the functional form, an exclusion restriction is often required in practice to ensure
identification (Cameron & Trivedi, 2009). Since we did not find a convincing exclusion
restriction, we do not estimate the selection model.

Tobit Model

For the Tobit specification following Tobin (1958), we estimate the following equation using
maximum likelihood

hit = max(0, β1Tit + Xitβ2 + uit) (3.2)

where we assume that uit ∼ Normal(0, σ2).21 Treatment status Ti and the matrix of controls
X are defined analogously to the extensive margin.

20See Chapter 2. The group of individuals with positive working hours consists of two potentially different
subgroups. First, the subgroup with positive working hours irrespective of whether their spouse has reached
FRA or not; and second, the subgroup with positive working hours only because their spouse has reached
FRA (or only because their spouse has not yet reached FRA), with zero working hours otherwise. For
the intensive margin effect, we are interested in the first group only. However we do not observe group
membership. If the two groups differ in unobserved characteristics, a selection bias occurs.

21The usual motivation for the Tobit model is to assume a latent variable y∗ = X ′β + ε with ε ∼
Normal(0, σ2), and an observation rule such that the observed variable is equal to the latent variable if the
latent variable is positive, and equal to zero if the latent variable is zero or negative (Cameron & Trivedi,
2009). In our case of working hours, a latent variable for working hours, allowed to be negative, is not very
intuitive. Therefore we do not adopt the notion of a latent variable.
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If the Tobit model is correctly specificed, β1 represents the causal intensive margin effect,
see Staub (2014). The coefficient β1 captures the effect of having a spouse B at or above
FRA on working hours of individual A with positive working hours irrespective of whether
their spouse has reached FRA or not. In the Tobit model, extensive and intensive margin
effects are closely linked due to the functional form. As a result, extensive and intensive
margin effects are restricted to have the same sign.

Two-part Model

Following Cragg (1971), the two-part model specifies separate mechanisms for the participa-
tion decision (extensive margin), and the hours decision for individuals with positive hours
(intensive margin). Since we are interested in the intensive margin effect, we focus on the
second part, the hours decision for individuals with positive working hours. In the sample
of individuals with positive working hours, we estimate an OLS regression of the form

log hit = β1Tit + Xitβ2 + εit, for hit > 0, (3.3)

where treatment status Ti and the matrix of controls X are defined analogously to the
extensive margin. The log specification ensures that predicted hours are positive.

We are interested in the average partial effect of Tit on hit (not on log hit) for individuals
with positive hours. To achieve this, we apply the smearing retransformation proposed by
Duan (1983). In the two-part model, the partial effect of Tit on hit has a causal interpretation
if treatment Ti has no effect on the participation decision (assumption of no Switchers)
or if the assumption of conditional mean independence holds (see Angrist (2001), Staub
(2014) and Appendix 2.A of Chapter 2).22 If individuals leave the labor market due to
their spouse reaching FRA (no Switchers assumption violated) and if individuals reacting
at the extensive margin have different average hours than Participants (conditional mean
independence assumption violated), the estimated intensive margin effect is biased.

Difference-in-Difference on Positive Outcomes

The difference-in-difference estimator on positive outcomes represents an alternative to the
two-part model. The identification of the causal effect in the difference-in-difference estima-
tor is based on the findings of Chapter 2. The estimation, however, differs for reasons of
consistency within this chapter. In this chapter we employ models for realized outcomes.
Hence, we estimate - in the sample of individuals with positive working hours in two subse-
quent periods - an OLS regression of the form

∆hit = β1∆Tit + ∆Xitβ2 + νit for hit > 0, hit−1 > 0, (3.4)

22Conditional mean independence assumes that the mean of individuals who are working irrespective of
treatment status is equal to the mean of individuals working only in case of treatment or only in case of no
treatment.
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where ∆zit = zit− zi,t−1 for zit ∈ {hit, Tit,Xit}.23 Treatment status Ti is defined analogously
to the extensive margin. The matrix of controls X includes age dummies, age of the spouse,
age of the spouse squared, dummies for the year of the interview, and a dummy whether the
household size is larger than two. Dummies for education and whether the respondent is a
Swiss citizen are constant and therefore dropped.

We are interested in β1, the causal intensive margin effect. The coefficient β1 captures
the causal effect of having a spouse at or above FRA on working hours for individuals with
positive working hours irrespective of whether their spouse has reached FRA or not.

Compared to the intensive margin part of the two-part estimator, the difference-in-
difference estimator on positive outcomes does not assume that treatment has no effect on the
participation decision or that conditional mean independence holds. As we demonstrate in
Chapter 2, the central assumptions of the difference-in-difference estimator on positive out-
comes are no pre-treatment effect, treatment and time monotonicity at the extensive margin,
and common trend in positive outcomes.

No pre-treatment effect requires that in expectation, having a spouse who reaches FRA
in period t does not affect the respondent’s labor supply in period t− 1. If this assumption
is violated, it is likely that individuals adjusted their labor supply in the same direction
in period t − 1 as they do in period t. In this case, the estimated causal effect is biased
towards zero, and would therefore represent a lower bound of the true causal effect (in
absolute terms). Treatment monotonicity at the extensive margin excludes the possibility
that individuals work when their spouse has reached FRA, but would not work if their spouse
had not yet reached FRA. Similarly, Time monotonicity at the extensive margin excludes
unretirement, i.e. the possibility that individuals work in period t, but do not work in period
t − 1. Common trend in positive outcomes assumes a common trend between individuals
with positive hours in case their spouse has reached FRA and individuals with positive
hours in case their spouse has not yet reached FRA. The common trend assumption can be
motivated in the data using pretreatment observations. We compare the change in hours
from the penultimate period (t − 2) to the previous period (t − 1) for the treatment group
(spouse reaches FRA in period t), and the control group (spouse does not reach FRA in
period t). We find no evidence for a difference in trends relating to working hours between
the two groups, see Table 3.5 in Appendix 3.A.

In Appendix 3.B, we present summary statistics for the samples used to estimate the
probit and tobit model, the two-part model, and the difference-in-difference estimator. The
differences between the means of treatment and control group are largest for age and age
spouse. For differences in age, we control using age dummies. For differences in age spouse,

23Note that this setting differs from the conventional difference-in-difference setting with two groups
and two periods, in which both groups are untreated in the first period and one group is treated in the
second period. We are in a setting with multiple time periods and multiple groups. Individuals can be
treated at different points in time. This version of the difference-in-difference estimator can be written as
hit = δi + δt +β1Tit + Xitβ2 + εit, where δi and δt are fixed effects for each individual i and each time period
t, and Tit is the indicator for being in a treatment group after treatment occurred. This is equivalent to a
fixed effects model. Taking first differences yields ∆hit = {δt− δt−1}+ β1∆Tit + ∆Xitβ2 + νit, which is the
equation we estimate, except that the time fixed effects are included in the matrix of controls X.
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we control using a linear and a quadratic term of age of the spouse.

3.7 Results

The results section is divided into extensive and intensive margin. Both parts start with
simple graphical evidence. Subsequently, we present estimates of the causal effect of having
a spouse B at or above the FRA on labor supply of individual A.

3.7.1 Extensive Margin

Graphical Evidence

Figure 3.5 presents the labor force participation (LFP) rates of married men (left panel) and
married women (right panel), depending on whether they have reached their own FRA or
not. The light-gray bars on the left indicate the LFP rates of respondents with a spouse
who has not yet reached FRA; the dark-gray bars on the right indicate the LFP rates of
respondents with a spouse who has reached FRA. Not surprisingly, reaching their own FRA
is associated with a decrease in LFP rates for both men and women.

Men who have not reached their own FRA have a slightly higher LFP rate in case their
spouse has not reached FRA. Men who have reached their own FRA have similar LFP rates
regardless of whether their spouse has reached FRA or not.

A more distinct pattern can be observed among women in Figure 3.5b. Women who have
not reached their own FRA have a higher LFP rate in case their spouse has not reached
FRA. Similarly, women who have reached their own FRA have also a higher LFP rate in
case their spouse has not yet reached FRA.

Figure 3.5: Labor Force Participation Rates by FRA Status of Spouse
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Note: Labor force participation rates (LFP) by FRA status of their spouse. Interviewed individuals
and spouses are aged between 58 and 70. The bars indicate 95% confidence interval for the mean.
Data source: Own calculations based on SLFS data, FSO.
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Estimation Results

In the graphical analysis, we controlled for age of the respondent, but not for other potential
confounders. By estimating the probit model described in Section 3.6.1, we can both control
for potential confounders and increase precision of the estimate of interest. Besides control-
ling for age and age of the spouse, we also control for the year of the interview, education,
household size, and whether the respondent is Swiss. The results are presented in Table 3.2.

Table 3.2: Estimation Extensive Margin

Dep. variable: Indicator 1(working hours > 0)

Men Women
APE SE(APE) APE SE(APE)

Spouse FRA reached 0.012 (0.014) −0.034*** (0.013)
FRA reached −0.133*** (0.016)

Age dummies Yes Yes
Year dummies Yes Yes
Age spouse Yes Yes
Age spouse squared Yes Yes
Education dummies Yes Yes
Household size > 2 Yes Yes
Swiss citizenship Yes Yes
Observations 15683 14643

Note: Results Probit estimation. Average partial effects (APE) reported. In-
terviewed individuals and spouses are aged between 58 and 70. Standard errors
bootstrapped (1000 replications) and clustered at the individual level. ∗p < 0.1.
∗∗p < 0.05. ∗∗∗p < 0.01.

In the case of men, we find no evidence that having a spouse at or above FRA has an
effect on LFP. This finding is line with graphical results from Figure 3.5. By contrast, women
react when their spouses reach FRA. On average, women whose spouses have reached FRA
are 3.4 percentage points less likely to be in the labor force than women whose spouses have
not yet reached FRA.

Since there is variation in the FRA of women, we are also able to identify the effect
of women reaching their own FRA.24 Women who have reached their own FRA are 13.3
percentage points less likely to work compared to women who have not yet reached their
own FRA. Therefore, the direct effect of -13.3 percentage points is approximately four times
larger than the indirect effect of -3.4 percentage points.

These results are in line with Lalive and Parrotta (2017). Using another data source -
census data from Switzerland - and a double regression discontinuity design, they find the

24If there was no variation in the FRA, reaching the own FRA would be multicollinear with the age
dummies.
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same gender asymmetry as we do. The LFP of women decreases by approximately 2 to 3
percentage points when their spouses reach FRA. Moreover, the LFP of women decreases
by approximately 12 percentage points when they reach their own FRA. They also find no
significant indirect effect for men.

Anticipation and Delay Effects

Individuals with a spouse approaching FRA potentially anticipate treatment and therefore
change behavior already before their spouse has actually reached FRA. If this anticipation
effect has the same sign as the causal effect, the estimated causal effect is biased towards
zero. We examine anticipation by including a dummy in the estimation equation which is
equal to 1 if the spouse is one year younger than his/her FRA and zero otherwise. Table
3.11 in Appendix 3.C presents the results. We do not find evidence for anticipation. For
both men and women, the estimated effect is small and not significant.

On the other hand, individuals might not adjust their labor supply immediately when
their spouse reaches FRA, but with delay. If these delayed effects have the same sign as the
causal effect, the estimated causal effect represents again a lower bound (in absolute terms)
of the total causal effect. We examine the delay effect by modifying our dummy variables of
interest. First, we include a dummy that equals one when the spouse’s age equals his/her
FRA. Second, we include a dummy that equals one when the spouse is one or more years
older than his/her FRA. In this specification, the first dummy captures the immediate effect,
i.e. the effect of having a spouse directly at FRA relative to having a spouse who has not
yet reached FRA. The second dummy captures the sum of immediate and delayed effect, i.e.
the effect of having a spouse who is one or more years older than FRA relative to having
a spouse who has not yet reached FRA.25 Table 3.12 in Appendix 3.C presents the results.
We find evidence that women respond with delay. The immediate effect of having a spouse
directly at FRA is -2.7 percentage points, the combined effect of immediate and delayed
effects is -4.7 percentage points.

3.7.2 Intensive Margin

Graphical Evidence

Figure 3.6 illustrates the average working hours - conditional on positive working hours - of
married men (left panel) and married women (right panel), depending on whether they have
reached their own FRA or not. The light-gray bars on the left indicate the average working
hours of respondents with a spouse who has not yet reached FRA; the dark-gray bars on
the right indicate the average working hours of respondents with a spouse who has reached
FRA. We observe that the intensive margin is a margin at which men and women adjust
their labor supply. Reaching their own FRA is associated with a decrease in working hours

25Note that the sum of immediate and delayed effect is not equal to the effect presented in Table 3.2.
The effect presented in Table 3.2 corresponds to a weighted average of immediate and delayed effect.
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for both men and women.
Men who have not reached their own FRA have similar average working hours regardless

of whether their spouse has reached FRA or not. Men who have reached their own FRA
have slightly higher average working hours in case their spouse has not reached FRA.

We observe a similar pattern for women. The average working hours of women who have
not reached their own FRA are similar, regardless of whether their spouse has reached FRA
or not. Women who have reached their own FRA have slightly higher average working hours
in case their spouse has not reached FRA.

Figure 3.6: Weekly Working Hours by FRA Status of Spouse
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Note: Weekly working hours of individuals with positive working hours, by FRA status of their
spouse. Interviewed individuals and spouses are aged between 58 and 70. Error bars indicate 95%
confidence interval for the mean. Data source: Own calculations based on SLFS data, FSO.

Estimation Results

We employ a Tobit, a two-part, and a difference-in-difference estimator. The results for men
are presented in Table 3.3, the results for women in Table 3.4. We do not find evidence that
men adjust their working hours when their spouses reach FRA. For all models the estimated
effect is not statistically significant. The estimate of the Tobit model is positive, whereas
the estimates of the two-part and difference-in-difference estimator are negative.

In combination with the graphical evidence presented in Figure 3.6a, we conclude that
the intensive margin is a margin at which men adjust their labor supply, but there is no
evidence of spillover effects from their wives.
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Table 3.3: Estimation Intensive Margin Men

Dependent variable: Working hours

Tobit Two-part Diff-in-diff

Spouse FRA reached 0.624 −0.786 −0.810
(1.318) (0.687) (0.715)

Age dummies Yes Yes Yes
Year dummies Yes Yes Yes
Age spouse Yes Yes Yes
Age spouse squared Yes Yes Yes
Education dummies Yes Yes No
Household size > 2 Yes Yes Yes
Swiss citizenship Yes Yes No
Observations 15683 6724 3995

Note: Results intensive margin effect for men with Tobit, two-part, and
difference-in-difference estimator. Interviewed individuals and spouses are
aged between 58 and 70. Standard errors bootstrapped (1000 replications)
and clustered at the individual level. ∗p < 0.1. ∗∗p < 0.05. ∗∗∗p < 0.01.

As for women, we find only weak evidence of a small negative indirect effect. In the Tobit
model, the effect of having a spouse at or above FRA on working hours is approximately -2.8
hours and statistically significant at the 1% level.26 In the two-part model, the estimated
indirect effect on working hours is approximately -0.7 hours and statistically significant at
the 10% level. The estimated indirect effect using the difference-in-difference estimator is
negative but not statistically significant.

In the Tobit model, extensive and intensive margin effects are restricted to have the
same sign. Since we find a negative effect at the extensive margin for women (see Table
3.2), the intensive margin effect is restricted to be negative as well. Therefore, the finding of
a negative intensive margin effect could be driven only by the extensive margin, without a
true intensive margin effect. Since we are concerned with this restriction, the Tobit estimate
should be interpreted with caution.

The two-part model allows for separate mechanisms determining extensive and intensive
margin. The two-part estimate has a causal interpretation if treatment has no effect on
the participation decision or if the assumption of conditional mean independence holds (see
Section 3.6.2). Since we find a negative effect at the extensive margin for women (see Table
3.2), the assumption that treatment has no effect on the participation decision is likely
violated. The conditional mean independence assumption is also restrictive. It is possible
that unobserved characteristics of individuals who are working irrespective of treatment
status are different from unobserved characteristics of individuals working only in case of

26This is the causal effect on working hours of women with positive hours irrespective of whether their
spouse has reached FRA or not, see Section 3.6.2.
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treatment or only in case of no treatment. If individuals reacting at the extensive margin
have lower average working hours than Participants, the estimated intensive margin effect is
biased towards zero.27

Compared to the Tobit and two-part model, the difference-in-difference estimator relies
on fewer observations. This is because we need positive outcomes in two subsequent periods.
Moreover, since we take first differences, the number of observations is further reduced. As
a result, the standard error of the intensive margin effect, cet. par., increases.

We conclude that there is only weak evidence for a small indirect effect. If there is an
effect and women adjust their working hours when their spouse reaches FRA, the magnitude
of the average effect is likely to be small.

Due to the variation in FRA of women, we can also identify the direct effect of women
reaching their own FRA. Depending on the model, the direct effect varies between -2.2
and -10.7 hours. The effects are statistically significant at least at the 10% level. Again,
the Tobit assumptions are likely too restrictive. The estimates from the two-part and the
difference-in-difference estimator are more credible.

Table 3.4: Estimation Intensive Margin Women

Dependent variable: Working hours

Tobit Two-part Diff-in-diff

Spouse FRA reached −2.821*** −0.707* −1.252
(0.987) (0.419) (0.763)

FRA reached −10.723*** −3.469*** −2.178*
(1.361) (0.593) (1.162)

Age dummies Yes Yes Yes
Year dummies Yes Yes Yes
Age spouse Yes Yes Yes
Age spouse squared Yes Yes Yes
Education dummies Yes Yes No
Household size > 2 Yes Yes Yes
Swiss citizenship Yes Yes No
Observations 14643 5191 2993

Note: Results intensive margin effect for women with Tobit, two-part, and
difference-in-difference estimator. Interviewed individuals and spouses are
aged between 58 and 70. Standard errors bootstrapped (1000 replications)
and clustered at the individual level. ∗p < 0.1. ∗∗p < 0.05. ∗∗∗p < 0.01.

27This statement is true under the assumption that the true intensive margin effect is negative and that
there are no individuals working only in case their spouse has reached FRA, and not working in case their
spouse has not reached FRA. If the true intensive margin effect is positive, the estimated intensive margin
effect is biased away from zero. If there are individuals working only in case their spouse has reached FRA,
and not working in case their spouse has not reached FRA, the direction of the bias can be positive or
negative.
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3.7.3 Robustness

Extensive Margin

Instead of using a probit model, we estimate a linear probability model. The estimation
results are presented in Table 3.13 in Appendix 3.E. The results are very similar in both sign
and magnitude. In the men sample, the effect is not statistically significant. In the women
sample, the estimated indirect effect is approximately 3.9 percentage points and statistically
significant at the 1% level.

Instead of using contracted working hours as the dependent variable, we use actual work-
ing hours of the previous week as an alternative measure for labor supply. The estimation
results are presented in Table 3.14 in Appendix 3.E. The results are very similar in both
sign and magnitude. We find no evidence that men adjust their labor force participation
rate when their wives reach FRA. By contrast, the LFP rate of women decreases by 2.7
percentage points when their spouses reach FRA.28

As discussed in Section 3.6, we control for the age of the spouse with a linear and a
quadratic term in the main specification. In a robustness check, we test whether the results
are robust to this specification. We exclude the age of the spouse as a control variable, but
restrict the age of the spouse to be between two years before and two years after reaching
FRA. The results are presented in Table 3.17, Appendix 3.E. For men, the effect of the
spouse reaching FRA is, once again, small and not statistically significant. For women, the
effect is -4.4 percentage points and significant.

We conclude that the extensive margin results are not sensitive with respect to the model
for the binary outcome, with respect to the definition of labor supply, or with respect to the
specification with which the age of the spouse is included in the model.

Intensive Margin

Instead of using contracted working hours, we use actual working hours of the previous week.
The results are presented in Tables 3.15 and 3.16 in Appendix 3.E. For men, the estimated
intensive margin effect are not statistically significant. As for women, the estimated inten-
sive margin effects are smaller in absolute terms compared to the main specification. The
estimates of the indirect effect from the two-part and the difference-in-difference estimator
are not statistically significant. Moreover, the results are not sensitive to the specification
with which the age of the spouse is included in the model (Tables 3.18 and 3.19 in Appendix
3.E). These robustness checks provide further evidence that - if there is an intensive margin
effect for women - the effect is small in magnitude.

28Differences between having positive contracted working hours and having positive working hours in the
previous week arise for example when a respondent was sick or on holidays in the previous week. Hence
there are natural situations in which contracted working hours are positive and actual working hours in the
previous week are zero. Vice versa, a situation where actual working hours in the previous week are positive
and contracted working hours are zero is unlikely. Overall, this means that actual working hours in the
previous week contains more zeros than contracted working hours. This explains why the treatment effect
magnitude is slightly smaller when using actual working hours in the previous week.
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3.8 Discussion

As indicated in Table 3.1, the sign of the expected labor supply reaction of individual A
to spouse B reaching FRA depends on whether B reduces labor supply. In our estimation
sample, approximately 32% of men and 22% of women reduce their labor supply by 8 or more
hours when reaching FRA. Of those who do not reduce their labor supply, approximately
76% of men and 67% of women are already retired, while 24% of men and 33% of women
are still working.

In the case of women, we observe a negative labor supply reaction. If the effect is driven
primarily by women whose husbands reduce labor supply at FRA, complementarities in
leisure must be sufficiently large to outweigh liquidity, joint taxation, and housework effects.
The negative labor supply reaction, however, can also be explained by liquidity and joint
taxation effects of women whose husbands do not reduce labor supply at FRA. In the case
of men, we do not find evidence of a labor supply reaction. This does not rule out that men
have preferences for joint leisure time, since liquidity, joint taxation, and housework effects
possibly outweigh complementarity in leisure effects.

Difference Between Men and Women

There is heterogeneity in complementarity in leisure, liquidity, joint taxation and housework
effects, which may explain part of the asymmetric reaction of men and women. The change
in labor supply of men reducing their workload when reaching their own FRA is larger than
the reaction of women. Considering only individuals who reduce labor supply at FRA by
8 or more hours, we find that men reduce weekly working hours on average by 33 hours
(extensive and intensive reaction combined) whereas women decrease their weekly working
hours by 23 when reaching their own FRA. This difference can explain part of the asymmetry
in the indirect effect since, cet. par., the complementarity effect is stronger the larger the
labor supply reaction of the spouse.

The liquidity and joint taxation effect depend on the labor supply reaction of the spouse.
We consider first the case where spouse B reduces labor supply at own FRA. In the analysis
above, we found that men react more strongly to their own FRA. Assuming men and women
achieve the same replacement rate, the drop in household income is larger when the husband
reaches his FRA. Therefore, tax and liquidity effects are positive and larger for women than
for men. For this reason, tax and liquidity effects partially offset the asymmetry stemming
from differences in complementarity in leisure effects. In the case where spouse B does not
reduce labor supply at own FRA, we do not find evidence for asymmetries with respect to
liquidity and joint taxation effects. On the basis of questions on early retirement in the SLFS,
we find that only 0.93% of men and 0.85% of women answered that taxes were the main
determinant of their early retirement decision. These results suggest that tax considerations
are only of secondary importance when deciding when to retire.

Changes in relation to housework upon retirement are similar for men and women. On
the basis of questions on housework in the SLFS, we find that men increase the amount of
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housework they do by approximately 40 minutes a day, whereas this increase is approximately
60 minutes in the case of women.

To sum up, our analysis provides evidence that complementarity in leisure effects are an
important mechanism for the indirect effect. Liquidity effects can play a role when reacting
to the spouse reaching FRA. Finally, we cannot exclude the possibility that the asymmetric
reaction is driven by gender differences in relation to preferences.

Margin of Reaction

We find that women react at the extensive margin, but there is no evidence of a substantial
intensive margin reaction. We would like to point out several potential explanations.

First, women may want to reduce their working hours, but are prevented from doing so
by hours constraints set by firms. We examine this mechanism by analyzing desired working
hours. Instead of using contracted working hours as dependent variable, we use desired
hours. The results are presented in Tables 3.9 and 3.10 in Appendix 3.C. We do not find
evidence that women would like to reduce their working hours in response to their husbands
reaching FRA. Second, social norms in relation to working hours may discourage women
from adjusting their working hours when their husbands reach FRA. The distribution of
weekly working hours for men and women is presented in Figure 3.7. The graph suggests
that social norms are less pronounced for women than for men. Third, fixed costs of work
imply that individuals are not willing to work below a minimum number of hours. A large
proportion of women work 21 hours per week or less, see Figure 3.7. This group is likely
to react at the extensive margin as a result of the presence of fixed costs of work. Fourth,
complementarities in leisure may be discontinuous at zero working hours. For example, it
may be necessary for both partners to be out of the labor force if they want to change
residence for retirement, or travel for an extended period.
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Figure 3.7: Distribution of Weekly Working Hours of Men and Women
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Note: Distribution of weekly working hours of married men and women aged 58-70. Only re-
spondents who work between 1 and 60 hours per week are shown. Own calculations based on
SLFS.

3.9 Conclusion

In this chapter, we estimated labor supply responses to the spouse reaching FRA. We find
that labor force participation of women drops by approximately 3 percentage points when
their spouses reach FRA. By contrast, the LFP of men does not respond to their spouses
reaching FRA. At the intensive margin, we find no evidence for substantial effects. The
estimated effects are small in magnitude and mostly non-significant. This is despite the fact
that older workers use working hours to adjust their labor supply when they reach FRA.

We identify four different mechanisms that could explain the effect on labor supply of
having a spouse at or above FRA: complementarities in leisure, joint taxation, liquidity,
and housework effects. Since we find a negative indirect effect for women, we argue that
complementarities in leisure and liquidity effects are important mechanisms for the indirect
effect. We explain the absence of a substantial intensive margin reaction in the case of
women on the basis of the presence of fixed costs of work.
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Appendix 3.A Identification

Figure 3.8: Identifying Variation in Age Difference Within Couples

Note: Data source: Own calculations based on SLFS data, FSO.

Table 3.5: Estimation Intensive Margin t− 1

Dependent variable: ∆(Working hours, t-1)

Men Women
Coef. SE(Coef.) Coef. SE(Coef.)

Spouse FRA reached −0.537 (0.954) 0.343 (0.800)

FRA reached No Yes
Age dummies Yes Yes
Year dummies Yes Yes
Education dummies No No
Household size > 2 Yes Yes
Swiss citizenship No No
Age spouse Yes Yes
Age spouse squared Yes Yes
Observations 2367 1751

Note: Results difference-in-difference estimation on positive hours in period t-1.
Interviewed individuals and spouses are aged between 58 and 70. Standard errors
bootstrapped (1000 replications) and clustered at the individual level. ∗p < 0.1.
∗∗p < 0.05. ∗∗∗p < 0.01.
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Appendix 3.B Summary Statistics

Table 3.6: Summary Statistics Probit and Tobit Sample

Men Women
Treatment Control Treatment Control
Mean / SD Mean / SD Mean / SD Mean / SD

Age 65.98 63.06 64.57 61.57
(2.90) (2.96) (2.84) (2.65)

Year of Interview 2003.15 2003.80 2003.72 2002.42
(4.10) (4.34) (3.97) (4.43)

Age Spouse 65.73 60.15 67.40 61.73
(2.18) (1.55) (1.68) (1.85)

Education
Lower Education 0.18 0.18 0.42 0.36

(0.39) (0.39) (0.49) (0.48)
Secondary Education 0.52 0.49 0.50 0.54

(0.50) (0.50) (0.50) (0.50)
Higher Education 0.29 0.32 0.08 0.10

(0.45) (0.47) (0.27) (0.30)
Household size > 2 0.08 0.17 0.09 0.11

(0.26) (0.37) (0.28) (0.32)
Swiss Citizenship 0.77 0.73 0.80 0.83

(0.42) (0.45) (0.40) (0.38)
Observations 7206 8477 8461 6182
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Table 3.7: Summary Statistics Two-Part Sample (Intensive Margin)

Men Women
Treatment Control Treatment Control
Mean / SD Mean / SD Mean / SD Mean / SD

Age 64.26 61.83 62.62 60.39
(3.09) (2.50) (2.77) (2.04)

Year of Interview 2001.95 2003.01 2003.00 2001.85
(4.72) (4.71) (4.46) (4.52)

Age Spouse 65.15 59.91 67.07 61.46
(2.18) (1.50) (1.67) (1.86)

Education
Lower Education 0.14 0.15 0.35 0.32

(0.35) (0.36) (0.48) (0.47)
Secondary Education 0.52 0.48 0.53 0.56

(0.50) (0.50) (0.50) (0.50)
Higher Education 0.35 0.37 0.12 0.12

(0.48) (0.48) (0.33) (0.32)
Household size > 2 0.10 0.19 0.11 0.14

(0.30) (0.39) (0.32) (0.35)
Swiss Citizenship 0.82 0.78 0.85 0.86

(0.38) (0.42) (0.35) (0.34)
Observations 2248 4476 1996 3195

Table 3.8: Summary Statistics Diff-in-Diff Sample

Men Women
Treatment Control Treatment Control
Mean / SD Mean / SD Mean / SD Mean / SD

Age 64.00 61.80 62.42 60.34
(2.98) (2.42) (2.68) (1.95)

Year of Interview 2001.94 2003.31 2003.16 2002.18
(4.77) (4.61) (4.47) (4.35)

Age Spouse 65.04 59.91 67.05 61.46
(2.14) (1.50) (1.69) (1.87)

Education
Lower Education 0.13 0.14 0.33 0.30

(0.33) (0.34) (0.47) (0.46)
Secondary Education 0.52 0.47 0.54 0.57

(0.50) (0.50) (0.50) (0.49)
Higher Education 0.34 0.39 0.13 0.12

(0.48) (0.49) (0.33) (0.33)
Household size > 2 0.11 0.19 0.12 0.14

(0.32) (0.39) (0.32) (0.35)
Swiss Citizenship 0.83 0.80 0.86 0.87

(0.38) (0.40) (0.35) (0.34)
Observations 1267 2728 1138 1855
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Appendix 3.C Discussion

Table 3.9: Estimation Intensive Margin Desired Hours Men

Dependent variable: Desired Hours

Tobit Two-part Diff-in-diff

Spouse FRA reached −0.189 −0.123 0.163
(1.736) (0.409) (0.338)

Age dummies Yes Yes Yes
Year dummies Yes Yes Yes
Age spouse Yes Yes Yes
Age spouse squared Yes Yes Yes
Education dummies Yes Yes No
Household size > 2 Yes Yes Yes
Swiss citizenship Yes Yes No
Observations 11520 2463 6648

Note: Results intensive margin effect for men with Tobit, two-part, and
difference-in-difference estimator. Interviewed individuals and spouses are
aged between 58 and 70. Standard errors bootstrapped (1000 replications)
and clustered at the individual level. ∗p < 0.1. ∗∗p < 0.05. ∗∗∗p < 0.01.
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Table 3.10: Estimation Intensive Margin Desired Hours Women

Dependent variable: Desired Hours

Tobit Two-part Diff-in-diff

Spouse FRA reached −1.261 −0.217 0.030
(0.865) (0.307) (0.274)

FRA reached −9.708*** −2.978*** −2.156***
(1.197) (0.427) (0.408)

Age dummies Yes Yes Yes
Year dummies Yes Yes Yes
Age spouse Yes Yes Yes
Age spouse squared Yes Yes Yes
Education dummies Yes Yes No
Household size > 2 Yes Yes Yes
Swiss citizenship Yes Yes No
Observations 13546 3946 7964

Note: Results intensive margin effect for women with Tobit, two-part, and
difference-in-difference estimator. Interviewed individuals and spouses are
aged between 58 and 70. Standard errors bootstrapped (1000 replications)
and clustered at the individual level. ∗p < 0.1. ∗∗p < 0.05. ∗∗∗p < 0.01.
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Table 3.11: Anticipation Effects Extensive Margin

Dep. variable: Indicator 1(weekly working hours > 0)

Men Women
APE SE(APE) APE SE(APE)

Spouse FRA reached 0.023 (0.018) −0.036** (0.017)
Spouse 1 year younger than FRA 0.019 (0.014) −0.004 (0.013)

Age dummies Yes Yes
Year dummies Yes Yes
Age spouse Yes Yes
Age spouse squared Yes Yes
Education dummies Yes Yes
Household size > 2 Yes Yes
Swiss citizenship Yes Yes
Observations 15683 14643

Note: Results Probit estimation. Average partial effects (APE) reported. The dummy ”Spouse 1
year younger than FRA” captures the anticipation effect of having a spouse being one year before
reaching FRA. Interviewed individuals and spouses are aged between 58 and 70. Standard errors
bootstrapped (1000 replications) and clustered at the individual level. ∗p < 0.1. ∗∗p < 0.05.
∗∗∗p < 0.01.

Table 3.12: Delayed Effects Extensive Margin

Dependent variable: Indicator 1(weekly working hours > 0)

Men Women
APE SE(APE) APE SE(APE)

Spouse age = FRA 0.012 (0.014) −0.027** (0.013)
Spouse age ≥ FRA + 1 0.013 (0.018) −0.047*** (0.017)

Age dummies Yes Yes
Year dummies Yes Yes
Age spouse Yes Yes
Age spouse squared Yes Yes
Education dummies Yes Yes
Household size > 2 Yes Yes
Swiss citizenship Yes Yes
Observations 15683 14643

Note: Results Probit estimation. Average partial effects (APE) reported. Interviewed individuals
and spouses are aged between 58 and 70. Standard errors bootstrapped (1000 replications) and
clustered at the individual level. ∗p < 0.1. ∗∗p < 0.05. ∗∗∗p < 0.01.
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Appendix 3.D Institutional Background

Figure 3.9: Fraction of Individuals Insured in the 2nd Pillar
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Note: Fraction of individuals insured in 2nd pillar by gender and cohort. Error bars indicate 95%
confidence interval for the mean estimate. Data source: Own calculations based on special module
on social security in Swiss Labor Force Survey (SLFS).
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Appendix 3.E Sensitivity Analysis

3.E.1 Alternative Model: Linear Probability Model

Table 3.13: Estimation Extensive Margin Linear Probability Model

Dep. variable: Indicator 1(weekly working hours > 0)

Men Women
Coef. SE(Coef.) Coef. SE(Coef.)

Spouse FRA reached 0.013 (0.015) −0.039*** (0.014)
FRA reached −0.168*** (0.019)

Age dummies Yes Yes
Year dummies Yes Yes
Age spouse Yes Yes
Age spouse squared Yes Yes
Education dummies Yes Yes
Household size > 2 Yes Yes
Swiss citizenship Yes Yes
Observations 15683 14643

Note: Results linear probability model estimation. Interviewed individuals and
spouses are aged between 58 and 70. Standard errors bootstrapped (1000 repli-
cations) and clustered at the individual level. ∗p < 0.1. ∗∗p < 0.05. ∗∗∗p < 0.01.
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3.E.2 Alternative Dependent Variable: Hours Worked Last Week

Table 3.14: Estimation Extensive Margin Hours Worked Last Week

Dep. variable: 1(hours worked last week > 0)

Men Women
APE SE(APE) APE SE(APE)

Spouse FRA reached 0.016 (0.014) −0.027** (0.013)
FRA reached −0.116*** (0.016)

Age dummies Yes Yes
Year dummies Yes Yes
Age spouse Yes Yes
Age spouse squared Yes Yes
Education dummies Yes Yes
Household size > 2 Yes Yes
Swiss citizenship Yes Yes
Observations 15683 14643

Note: Results probit estimation. Average partial effects (APE) reported. In-
terviewed individuals and spouses are aged between 58 and 70. Standard errors
bootstrapped (1000 replications) and clustered at the individual level. ∗p < 0.1.
∗∗p < 0.05. ∗∗∗p < 0.01.

Table 3.15: Estimation Intensive Margin Hours Worked Last Week Men

Dependent variable: Hours worked last week

Tobit Two-part Diff-in-diff

Spouse FRA reached 0.888 −0.864 −0.789
(1.532) (0.706) (0.761)

Age dummies Yes Yes Yes
Year dummies Yes Yes Yes
Age spouse Yes Yes Yes
Age spouse squared Yes Yes Yes
Education dummies Yes Yes No
Household size > 2 Yes Yes Yes
Swiss citizenship Yes Yes No
Observations 15093 5927 3189

Note: Results intensive margin effect for men with Tobit, two-part, and
difference-in-difference estimator. Interviewed individuals and spouses are
aged between 58 and 70. Standard errors bootstrapped (1000 replications)
and clustered at the individual level. ∗p < 0.1. ∗∗p < 0.05. ∗∗∗p < 0.01.
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Table 3.16: Estimation Intensive Margin Hours Worked Last Week
Women

Dependent variable: Hours worked last week

Tobit Two-part Diff-in-diff

Spouse FRA reached −2.131* −0.151 −1.518
(1.134) (0.439) (1.017)

FRA reached −11.171*** −3.269*** −3.101**
(1.487) (0.627) (1.399)

Age dummies Yes Yes Yes
Year dummies Yes Yes Yes
Age spouse Yes Yes Yes
Age spouse squared Yes Yes Yes
Education dummies Yes Yes No
Household size > 2 Yes Yes Yes
Swiss citizenship Yes Yes No
Observations 14065 4357 2226

Note: Results intensive margin effect for women with Tobit, two-part, and
difference-in-difference estimator. Interviewed individuals and spouses are
aged between 58 and 70. Standard errors bootstrapped (1000 replications)
and clustered at the individual level. ∗p < 0.1. ∗∗p < 0.05. ∗∗∗p < 0.01.
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3.E.3 Restricting the Age of the Spouse

Table 3.17: Estimation Extensive Margin

Dep. variable: Indicator 1(weekly working hours > 0)

Men Women
APE SE(APE) APE SE(APE)

Spouse FRA reached 0.009 (0.013) −0.044*** (0.011)
FRA reached −0.147*** (0.021)

Age dummies Yes Yes
Year dummies Yes Yes
Age spouse No No
Age spouse squared No No
Education dummies Yes Yes
Household size > 2 Yes Yes
Swiss citizenship Yes Yes
Observations 7455 8053

Note: Results probit estimation. Average partial effects (APE) reported. Inter-
viewed individuals are aged between 58 and 70. Spouse of the interviewed per-
son aged between 2 years prior and 2 years after reaching FRA. Standard errors
bootstrapped (1000 replications) and clustered at the individual level. ∗p < 0.1.
∗∗p < 0.05. ∗∗∗p < 0.01.
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Table 3.18: Estimation Intensive Margin Men

Dependent variable: Working hours

Tobit Two-part Diff-in-diff

Spouse FRA reached 0.500 −0.761 −0.738
(1.217) (0.571) (0.811)

Age dummies Yes Yes Yes
Year dummies Yes Yes Yes
Age spouse Yes Yes Yes
Age spouse squared Yes Yes Yes
Education dummies Yes Yes No
Household size > 2 Yes Yes Yes
Swiss citizenship Yes Yes No
Observations 7455 3291 1971

Note: Results intensive margin effect for men with Tobit, two-part, and
difference-in-difference estimator. Interviewed individuals are aged be-
tween 58 and 70. Spouse of the interviewed person aged between 2 years
prior and 2 years after reaching FRA. Standard errors bootstrapped (1000
replications) and clustered at the individual level. ∗p < 0.1. ∗∗p < 0.05.
∗∗∗p < 0.01.
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Table 3.19: Estimation Intensive Margin Women

Dependent variable: Working hours

Tobit Two-part Diff-in-diff

Spouse FRA reached −3.204*** −0.894*** −1.163
(0.817) (0.314) (0.854)

FRA reached −11.298*** −3.305*** −2.249
(1.729) (0.778) (1.511)

Age dummies Yes Yes Yes
Year dummies Yes Yes Yes
Age spouse Yes Yes Yes
Age spouse squared Yes Yes Yes
Education dummies Yes Yes No
Household size > 2 Yes Yes Yes
Swiss citizenship Yes Yes No
Observations 8053 2875 1666

Note: Results intensive margin effect for women with Tobit, two-part,
and difference-in-difference estimator. Interviewed individuals are aged
between 58 and 70. Spouse of the interviewed person aged between 2 years
prior and 2 years after reaching FRA. Standard errors bootstrapped (1000
replications) and clustered at the individual level. ∗p < 0.1. ∗∗p < 0.05.
∗∗∗p < 0.01.
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3.E.4 Comparison Functional Form for the Age of the Spouse

Figure 3.10: Comparison Functional Form Age Spouse: Linear and Quadratic Term vs. Dummies

.3
.3

5
.4

.4
5

.5
P

re
di

ct
io

ns

58 59 60 61 62 63 64 65 66 67 68 69 70
Age Spouse

Linear and Quadratic Dummies

Predictive Margins with 95% CI

Note: Results extensive margin probit model. Predictive margins at different ages of the spouse,
and at the mean values of age dummies, year dummies, education dummies, household size > 2
dummy, and Swiss dummy. The light-gray line indicates the predictive margins from a model with
age of the spouse included with a linear and a quadratic term, the dark-gray dashed line indicates
the predictive margins from a model with age of the spouse included with dummies.
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